

MITSUBISHI CNC NC Specification Selection Guide M800/M80 Series

• M800W Series

for a greener tomorrow

- M800S Series
- M80 Series

CNC LINEUP

High Performance

M800W

M800S

High-grade CNC well suited to high-speed high-accuracy machining and multi-axis multi-part system control

Premium CNC with Windows-based display provides expandability

•Separated type, a control unit separated

•Windows-based display with the latest PC

and OS offers excellent expandability

•Four expansion slots are provided as standard specifications, allowing for

expansion using option cards

and flexibility

from display

•Panel-in type, a control unit with integrated display

Multi-CPU architecture allows for high performance and high functional graphics
Windows-less display provides easy operability

M80

Standard CNC provides high productivity and easy operability

•Panel-in type, a control unit with integrated display

- •Provided in package (TypeA/TypeB) for easier selection
- •Windows-less display provides easy operability

OVERVIEW

PRODUCT LINES	
M800/M80 SERIES LINEUP ··	••••••
SELECTION PROCEDURE	
CNC SYSTEM ······	•••••
M800/M80 SERIES SPECIFICATION HARDWARE I/O UNIT AND OTHERS GENERAL CONNECTION DIAGRAN M800W Series (19-type), M800W CABLES LIST	IS LIST 1 Series (15-type), M80
DRIVE SYSTEM	•••••
SYSTEM CONFIGURATION SPECIFICATIONS TYPE	
SERVO MOTOR / DIRECT-DRIVE M HG Series	OTOR / LINEAR SER\ TM-RB Series LE MOTOR 200V
SJ-D Series	SJ-DG Series ····· SJ-V Series ······ SJ-PMB Series ···
HG-H Series	HQ-H Series ······
SJ-4-V Series ······84 DRIVE UNIT ·····	
MDS-E Series······86 MDS-EM Series·····90	MDS-EH Series ·· MDS-EJ/EJH Ser

	00	
MDS-EM Series ······	90	MDS-EJ/EJH S
SELECTION OF THE PO	OWER SUPF	PLY UNIT
SELECTION OF THE AL	DDITIONAL A	XIS DRIVE UNIT ····
DEDICATED OPTIONS	SERVO OPT	FIONS
DEDICATED OPTIONS	SPINDLE O	PTIONS
DETECTOR INTERFACE	E UNIT ······	
DEDICATED OPTIONS	DRIVE UNIT	OPTION
SELECTION OF CABLE	S	
LIST OF CABLES		

SOFTWARE TOOLS

GLOBAL SERVICE NETWORK

Standard

Contents

3
5
7
9
9 35 36 37 1800S Series, M80 Series 41
45
47 51 53 FRVO MOTOR 200V 57 59 LM-F Series 60 62 63 53-DJ Series 64 53-VL Series 72 53-81 82
86 s
137

1 2 3 4

5

PRODUCT LINES

PRODUCT LINES

* Optional parts are not provided as accessories for NC equipment.

M800/M80 SERIES LINEUP

				Lathe	system		
		(Display / Control	unit separate type)		(Display / Control u	nit integrated type)	
		M800W	/ Series	M800S Series M8		Series	
Mode	el name	M850W	M830W	M850S	M830S	ТуреА	ТуреВ
	Max. number of axes (NC axes + Spindles + PLC axes)	3	2	3	32	12	9
Num	Max. number of NC axes (in total for all the part systems)	3	2	3	32	10	7
iber c	Max. number of spindles	8	3		8	4	3
of con:	Max. number of PLC axes	8	3		8	6	5
trol ay	Max. number of PLC indexing axes	8	3		8	4	4
(es	Number of simultaneous	8	4	8	4		4
	Max. number of	8	3		8	8	5
Cont	rol unit-side High-speed	Avai	lable	-	_	_	_
Displ	ay unit-side High-speed am server mode	Avai	lable	Ava	ilable	Avai	lable
Front	-side SD card mode	Avai	lable	Ava	ilable	Avai	lable
Least	command increment	1r	ım	11	าm	0.1	μm
Least	control increment	1r	ım	11	าm	1r	ım
Max.	program capacity	2,000kB (5,120m) (1,000)		2,000kB (5,120m) (1,000)		500kB (1,280m) (1,000)	
Max.	PLC program capacity [steps]	512,000		512	,000	64,000	32,000
High- maxii	speed machining mode I num [kBPM]	33	3.7	30	3.7	33.7	_
High- maxii	speed machining mode II num [kBPM]	16	68	1	68	67.5	
High- maxii	speed high-accuracy control I num [kBPM]	67	.5	6	7.5	33.7	_
High- maxii	speed high-accuracy control II num [kBPM]	16	68	1	68	67.5	_
High- maxii	speed high-accuracy control III num [kBPM]		_	-	_	_	_
High-	accuracy control	Avai	lable	Ava	ilable	Available	_
SSS	control (Super Smooth Surface)	Avai	lable	Ava	ilable	Available	_
CC-L	ink (Master / Slave)	Avai	lable	Ava	ilable	Avai	lable
Displ	ay	19-type touch panel (selec	/ 15-type touch panel table)	15-type touch panel / (selec	10.4-type touch panel ctable)	15-type touch panel / / 8.4-type touch	10.4-type touch panel panel (selectable)
Keyb	oard			clear	keys		
HMI	customization function			NC De	signer2		
Wind	ows®8	Avai	lable				
Lang	uages supported	Ja	panese / English / Germ Korean / Portuguese	l 1an / Italian / French / Spanish / Chinese (traditional) / Chinese (simplified) / e / Hungarian / Dutch / Swedish / Turkish / Polish / Russian / Czech			d) /

* Maximum specifications including optional specifications are listed. Refer to the Specifications List for the details of each option.

	Machining center system								
(Display / Control	unit separate type)		(Display / Control unit integrated type)						
M800W	V Series	M8005	Series	M80 :	Series				
M850W	M830W	M850S	M830S	ТуреА	ТуреВ				
3	32	3	32	11	9				
1	6	1	6	8	5				
4	4		4		2				
8	B	1	8	(5				
٤	В	1	8		4				
8	4	8	4		4				
٤	В	1	8	8	5				
Avai	lable	-	-	-	_				
Avai	lable	Avai	ilable	Avai	lable				
Avai	ilable	Avai	ilable	Avai	lable				
1r	ากา	1r	าทา	0.1	μm				
1r	ım	1r	าทา	1r	ım				
2,00 (5,12 (1,0	00kB 20m) 000)	2,00 (5,13 (1,0	00kB 20m) 000)	500 (1,28 (1,0	0kB 30m) 000)				
512	,000	512	,000	64,000	32,000				
33	3.7	33	3.7	33.7	16.8				
16	68	10	68	67.5	_				
67	7.5	67	7.5	33.7	16.8				
16	68	11	68	67.5	_				
27	70	2	70	135	—				
Avai	lable	Avai	ilable	Avai	lable				
Avai	lable	Avai	ilable	Avai	lable				
Avai	lable	Avai	ilable	Avai	lable				
19-type touch panel (selec	/ 15-type touch panel ctable)	15-type touch panel / 10.4-	type touch panel (selectable)	15-type touch panel / 8.4-type touch p	10.4-type touch panel / panel (selectable)				
		clear	keys						
		NC De	signer2						
Avai	lable								
	Japanese / English Korean / Por	/ German / Italian / French / Sp tuguese / Hungarian / Dutch /	panish / Chinese (traditional) / C Swedish / Turkish / Polish / Rus	Chinese (simplified) / ssian / Czech					

M800/M80 SERIES LINEUP

10.1	111	12	a li
1111		hter Dr	I
		1	
	10	-	9

SELECTION PROCEDURE

Selection procedure flow chart

	Start selecting the NC specifications!	
TEP 1	Check the machine type and specifications	
	 Machine type: lathe / machining center / grinding machine / specia Details of control, required accuracy, with/without auxiliary axes (for work 	al-purpose machine, etc kpiece feeding, turret, etc.
TEP 2	Decide the NC specifications	P5
	 Number of axes, axis configuration, number of part systems, with/without sp Check the position detection method and detection performance (absolute/relative) Select the size of the display unit, keyboard 	bindles, number of I/O poin ve position, number of pulse
TEP 3	Decide the servo motor	P57
	 Select the servo motor capacity Check the outline dimensions, detector, and whether it has a scale 	or break
TEP 4	Decide the spindle motor	P62
	Check the spindle's base/maximum rotation speed, output, torque, outline dimension	ns and whether it has a keywa
•	 Check the spindle's base/maximum rotation speed, output, torque, outline dimensior Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, syn Check the C axis accuracy and the speed (when C axis is used) 	ns and whether it has a keywa
TEP 5	 Check the spindle's base/maximum rotation speed, output, torque, outline dimension Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, syn Check the C axis accuracy and the speed (when C axis is used) Decide the drive unit	ns and whether it has a keywa achronization, etc.) P86
TEP 5	 Check the spindle's base/maximum rotation speed, output, torque, outline dimension Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, synthetaxis) Check the C axis accuracy and the speed (when C axis is used) Decide the drive unit Check the capacity and the dimensions of a drive unit Check the power regeneration/resistor regeneration 	ns and whether it has a keywa nchronization, etc.)
TEP 5	 Check the spindle's base/maximum rotation speed, output, torque, outline dimensior Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, syn Check the C axis accuracy and the speed (when C axis is used) Decide the drive unit Check the capacity and the dimensions of a drive unit Check the power regeneration/resistor regeneration Decide the power supply unit 	ns and whether it has a keywa inchronization, etc.)
TEP 5	 Check the spindle's base/maximum rotation speed, output, torque, outline dimension Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, synthe) Check the C axis accuracy and the speed (when C axis is used) Decide the drive unit Check the capacity and the dimensions of a drive unit Check the power regeneration/resistor regeneration Decide the power supply unit Select the power supply unit only when a power regenerative drive of the power supply unit only when a power regenerative drive dr	ns and whether it has a keywa nchronization, etc.) P86 P93 unit is used
TEP 5 TEP 6 TEP 7	 Check the spindle's base/maximum rotation speed, output, torque, outline dimension Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, synthe) Check the C axis accuracy and the speed (when C axis is used) Decide the drive unit Check the capacity and the dimensions of a drive unit Check the power regeneration/resistor regeneration Decide the power supply unit Select the power supply unit only when a power regenerative drive of the power options 	P86 P93 unit is used P35,P41,P125
TEP 5 TEP 6 TEP 7	 Check the spindle's base/maximum rotation speed, output, torque, outline dimension Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, synthe) Check the C axis accuracy and the speed (when C axis is used) Decide the drive unit Check the capacity and the dimensions of a drive unit Check the power regeneration/resistor regeneration Decide the power supply unit Select the power supply unit only when a power regenerative drive of the power supply unit only when a power regenerative drive of the options Check the options (manual pulse generator, synchronous encoder, availability of network connection) 	P86 P93 P35,P41,P125 Pass and PLC connection, etc.
TEP 5 TEP 6 TEP 7 TEP 7	 Check the spindle's base/maximum rotation speed, output, torque, outline dimension Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, syn Check the C axis accuracy and the speed (when C axis is used) Decide the drive unit Check the capacity and the dimensions of a drive unit Check the power regeneration/resistor regeneration Decide the power supply unit Select the power supply unit only when a power regenerative drive of the potential of the options Check the options (manual pulse generator, synchronous encoder, availability of network connection Decide the software options 	ns and whether it has a keywa inchronization, etc.) P86 P93 unit is used P35,P41,P125 on and PLC connection, etc. ables and connectors themselves P9
TEP 5 TEP 6 TEP 7 TEP 8	 Check the spindle's base/maximum rotation speed, output, torque, outline dimension Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, syn Check the C axis accuracy and the speed (when C axis is used) Decide the drive unit Check the capacity and the dimensions of a drive unit Check the power regeneration/resistor regeneration Decide the power supply unit Select the power supply unit only when a power regenerative drive of the options Check the options Check the required cables and connectors (In some cases, customers may need to prepare context the number of programs stored (memory capacity), number of Check the required functions 	ns and whether it has a keywa achronization, etc.) P86 P93 unit is used P35,P41,P125 on and PLC connection, etc. ables and connectors themselves P9 of variable sets, etc.
TEP 5 TEP 6 TEP 7 TEP 7 TEP 8 TEP 8	 Check the spindle's base/maximum rotation speed, output, torque, outline dimension Frame-type or built-in spindle motor With/without optional specifications (orientation, spindle/C-axis, synthetaxis) Check the C axis accuracy and the speed (when C axis is used) Decide the drive unit Check the capacity and the dimensions of a drive unit Check the power regeneration/resistor regeneration Decide the power supply unit Select the power supply unit only when a power regenerative drive of the power supply unit only when a power regenerative drive of the check the options Check the options Check the options Check the required cables and connectors (In some cases, customers may need to prepare cases, the required functions Check the required functions Check the required functions Check the required functions 	ns and whether it has a keywa achronization, etc.)

■MEMO

3

CNC SYSTEM M800/M80 SERIES SPECIFICATIONS LIST

OStandard △Optional □Selection

				Lathe	system		<u>.</u>	Machining c	enter system
	class	M800W	Megow	M800S	Series	M80 TypeA	Series M90 TypeR	M800W	Series M920W/
Con	trol axes	IVIODUVV	100000	100003	100000	WOU TypeA	ию турев	IVIOOUVV	IVIOSUVV
1 C	iontrol axes								
1	Number of basic control axes (NC axes)	02	02	02	02	02	02	03	03
2	2 Max. number of axes (NC axes + Spindles + PLC axes)	016	016	016	016	12	9	016	016
	Max, number of NC axes	∆32	∆32	∆32	∆32		-	∆32	∆32
	1 (in total for all the part systems)	∆32	∆32	∆32	∆32	10	7	016	016
	2 Max. number of spindles	8	8	8	8	4	3	4	4
	3 Max. number of PLC axes	8	8	8	8	6	6	8	8
4	Max. number of PLC indexing axes	8	8	8	8	4	4	8	8
1	Number of simultaneous contouring control axes	8	4	8	4	4	4	8	4
20	Control part system	0	0	0	0	0	5	0	0
	Standard number of part systems	1	1	1	1	1	1	1	1
	Max_number of part systems	04	04	04	04	03	02	02	02
		8	∆8	8	∆8				
30	Tape (BS-232C input) mode	0	0	0	0	0	0	0	0
1	2 Memory mode	0	0	0	0	0	0	0	0
	3 MDI mode	0	0	0	0	0	0	0	0
4	High-speed program server mode								
	1 Control unit-side High-speed program server mode	Δ	Δ	-				Δ	Δ
	2 Display unit-side High-speed program conver mode	_	_	_	~	_		_	_
	2 Bispidy drift side i light-speed program server mode								
Ę	Front-side SD card mode	0	0	0	0	0	0	0	0
Inpu	t command								
1 C	ata increment								
	Least command increment								
	Least command increment 1µm	0	0	0	0	0	0	0	0
	Least command increment 0.1µm	0	0	0	0	0	0	0	0
	Least command increment 0.01µm (10nm)	Δ	Δ	Δ	Δ	_	_	Δ	Δ
	Least command increment 0.001µm (1nm)	Δ	Δ	Δ	Δ	-	-	Δ	Δ
2	2 Least control increment	_				-		_	-
	Least control increment 0.01µm (10nm)	0	0	0	0	0	0	0	0
	Least control increment	0	0	0	0	0		0	0
2 U	nit system							0	0
Π.	I Inch / Metric changeover	0	0	0	0	0	0	0	0
4	2 Input command increment tenfold	-	-	-	-	-	-	0	0
3 P	rogram format								
-	Program format								
	1 Format 1 for Lathe (G Code List 2, 3)	0	0	0	0	0	0	_	_
	2 Format 2 for Lathe (G Code List 4, 5)	0	0	0	0	0	0		
	4 Format 1 for Machining center			0				_	_
	5 Format 2 for Machining center (M2 format)		_	_	_	_	_	0	0
	6 MITCH IPICHI CNC appoint format		0		0				
		0		0	0	0		_	
4 C	ommand value								
.	Decimal point input I. II	0	0	0	0	0	0	0	0
[.	Aboolisto (Incomental account)				~				-
	Absolute / Incremental command	0	0	0	0	0	0	0	0
1	B Diameter / Radius designation	0	0	0	0	0	0	_	-
Pos	itioning / Internolation								
1 F	ositioning								
T	I Positioning	0	0	0	0	0	0	0	0
2	2 Unidirectional positioning	_	_	-	_	-	_	Δ	Δ
2 L	inear / Circular interpolation						1		
	Linear interpolation	0	0	0	0	0	0	0	0
	2 Circular interpolation (Center / Radius designation)	0	0	0	0	0	0	0	0
ļŀ		-	-		-	_		-	-
	3 Helical interpolation	0	0	0	0	0	0	0	0
4	Spiral / Conical interpolation	-	-	-	-	-	-		Δ
1	5 Cylindrical interpolation		Δ		Δ	0	0		Δ
6	3 Polar coordinate interpolation	Δ	Δ		Δ	0	0		Δ
				I				1	

N	lachining c	enter syste	m	
M800S	Series	M80 \$	Series	
Maeos	Magoe	M90 TupoA	M90 TupoR	1
100000	100000	NOU TypeA	моо турев	
	T		1	
03	03	03	03	
016	016	11	9	The NC axis, spindle, and PLC axis are
∆32	∆32		0	The NC axis can be manually or autor
016	016	8	5	The PLC axis can be controlled using a
010	010		0	The number of axes that is within the r
4	4	2	2	axis, spindle and PLC axis, can be use
8	8	6	6	
8	8	4	4	The number of PLC axes available to b
8	4			Number of axes with which simultaneous
0	4	4		Man purpher of NC quee peoplele to a
8	8	8	5	Max. number of NC axes possible to c
	1			
1	1	1	1	One part system is the standard.
02	02	02	01	Up to four part systems for a lathe sys
0	0	0	0	In this mode, operation is performed u
0	0	0	0	Machining programs stored in the mer
0	0	0	0	MDI data stored in the memory of the
				The second initial second second states of the OD s
_				The machining program stored in SD 0
				The machining program stored in the t
\triangle		0	0	The built-in disk of the display unit is m
				SD card I/F on the back of the display
0	0	0	0	The machining program stored in a SE
			[*]	
				The data increment handled in the cor
				narameters
0	0	0	0	Possible to command in incroments of
0	0	0	0	
0	0	0	0	Possible to command in increments of
\triangle				Possible to command in increments of
\triangle		_	_	Possible to command in increments of
				The least control increment determines
0		-		Pessible to control in increments of 0.0
0	0	0	0	Possible to control infinctements of 0.0
0	0	0	0	Possible to control in increments of 0.0
0	0	-	-	This function limits the command value
				The unit systems of the data handled i
0	0	0	0	with a parameter and a machining pro
				The program's command increment c
0	0	0	0	when a decimal point is not used for th
				·
				G code (program) format
				G code list for the lathe system. The G
_				
	-	-	-	(Prepared for a specific machine tool b
0	0	0	0	C and a list for the machining contex of
0	0	0	0	G code list for the machining center sy
				The formats of the fixed cycle for turnin
_	-	-	-	and fixed cycle for drilling (G80 to G89
	1			
	1		1	For the decimal point input type 1, the
0	0	0	0	least command increment. For decima
0		Ĭ		millimeters during the metric mode in
				When axis coordinate data are issued
0				commande a relative distance from the
0				designated position in a produtorminor
				The designation method of an avia con
				diameter designation Mean the diame
_	-			and helf (1 (2) the common ded energy
				Only hall (1/2) the commanded amoun
-	-	-	-	
0	0	0	0	This function carries out positioning at
\triangle		0	0	The G code command always moves
0	0	0	0	Linear interpolation is a function that m
0				feedrate designated by the F code.
0	0	0	0	This function moves a tool along a circ
	l			With this function, any two of three axe
0	0	0	0	performs linear interpolation in synchro
0				screws or 3-dimensional came
				This function interpolates area where the
\triangle		0	-	chappe
				Shapes.
				I his function transfers the shape that i
^	~	0	0	plane, and when the transferred shape
				a movement along the linear and rotar
				CNC unit during machining.
				This function converts the commands
\triangle		-	-	movements) and rotary axis movemen
	1	1	1	outside diameter of the workpiece, ari

4

M800/M80 SERIES SPECIFICATIONS LIST

General	explanation
General	explanation

e generically called the control axis

matically operated using a machining program.

a sequence program

max. number of control axes, and that does not exceed the max. number given for the NC

be used as indexing axis. ous interpolation control is possible control in the same part system

stem, and up to two part systems for a machining center system

using the machining program data from the RS-232C interface built in the CNC unit. mory of the CNC module are run. CNC unit are executed.

card can be operated by installing a SD card in the control unit SD card interface. built-in disk of the display unit can be operate nounted in the personal computer for M800W. For M800S / M80, the SD card inserted into / unit is equivalent to the built-in disk of the display unit.) card can be operated. This SD card is installed to the front-side SD card I/F

ntroller includes the input setting increment and command increment. Each type is set with

f 0.001mm (linear axis) and 0.001° (rotary axis). f 0.0001mm (linear axis) and 0.0001° (rotary axis). f 0.00001mm (linear axis) and 0.00001° (rotary axis).

f 0.000001mm (linear axis) and 0.000001° (rotary axis).

s the CNC's internal operation accuracy.

00001mm (linear axis) and 0.00001° (rotary axis).

000001mm (linear axis) and 0.000001° (rotary axis).

e for the rotary axis

in the controller include the metric system and inch system. The type can be designated gram.

can be multiplied by an arbitrary scale with the parameter designation. This function is valid he command increment.

G-code list is selected by parameter.

builder)

vstem. The G-code list is selected by parameter.

ning machining (G77 to G79), compound type fixed cycle for turning machining (G71 to G76) 9) can be switched to the MITSUBISHI CNC special formats.

e unit of the last digit of a command without a decimal point is the same as that of the al point input type 2, the last digit of a command without a decimal point is interpreted in inches in the inch mode, or in seconds for a time-based command.

I in a machining program command, either the incremental command method, which e current position, or the absolute command method, which commands a movement to a ed coordinate system, can be selected.

mmand value can be changed over with parameters between the radius designation or eter designation is selected, the scale of the length of the selected axis is doubled. (moves

high speed using a rapid traverse rate with the travel command value given in the program the tool to the final position in the direction determined by parameters

noves a tool linearly by the travel command value supplied in the program at the cutting

cular arc on the plane selected by the travel command value supplied in the program. es intersecting orthogonally are made to perform circular interpolation while the third axis onization with the arc rotation. This control can be exercised to machine large-diameter

the start point and end point are not on the circumference of the same circle into spiral

t is on the cylinder's side surface (shape yielded by the cylindrical coordinate system) onto a be is designated in the program in the form of plane coordinates, the shape is converted into ry axes of the original cylinder coordinates, and the contours are controlled by means of the

s programmed by the orthogonal coordinate axes into linear axis movements (tool ts (workpiece rotation) to control the contours. It is useful for cutting linear cutouts on the inding cam shafts, etc.

S/W ver.A4

					Lathe	system			Machining ce	enter system
		class	M800W	Series	M800S	Series	M80 S	Series	M800W	Series
1	_		M850W	M830W	M850S	M830S	M80 TypeA	М80 ТуреВ	M850W	M830W
	7	Milling interpolation	Δ	Δ	Δ	Δ	0	_	—	_
	8	Hypothetical axis interpolation	_	_	_	_	_	_	Δ	Δ
З	Сι	irve interpolation								
	2	Exponential interpolation	Δ	Δ	Δ	Δ			Δ	\triangle
	3	Spline interpolation (G05.1Q2 / G61.2)	—	_	_	_	_	_	Δ	\triangle
	4	NURBS interpolation	_	_	_	_	_	_	Δ	Δ
	5	3-dimensional circular interpolation	_	_	_	_	_	_	Δ	Δ
	6	Spline interpolation2 (G61.4)	—	-	-	_	-	-	\triangle	\triangle
Fe	ed									
1	Fe	edrate	4000	4000	4000	4000	4000	4000	4000	4000
	1	Rapid traverse rate (m/min)	1000	1000	1000	1000	1000	1000	1000	1000
	2	Cutting feedrate (m/min)	1000	1000	1000	1000	1000	1000	1000	1000
	3	Manual feedrate (m/min)	1000	1000	1000	1000	1000	1000	1000	1000
0	4	Rotary axis command speed tenfold	0	0	0	0	0	0	0	0
2	1	Each per minute (Asynchronous feed)	0	0	0	0	0	0	0	0
	2	Feed per revolution (Synchronous feed)	0	0	0	0	0	0		
	3	Inverse time feed						_	Δ	Δ
	4	F 1-digit feed	0	0	0	0	0	0	0	0
	5	Manual speed command	^	^		~	0	0	^	^
	7	G00 feedrate designation (,F command)	Δ	Δ	Δ	Δ	0	_	Δ	Δ
0	_	and all								
3	1	Bapid traverse override	0	0	0	0	0	0	0	0
	2	Cutting feed override	0	0	0	0	0	0	0	0
	3	2nd cutting feed override	0	0	0	0	0	0	0	0
	4	Override cancel	0	0	0	0	0	0	0	0
4	Ac	cceleration / Deceleration								
	1	Automatic acceleration / deceleration after interpolation	0	0	0	0	0	0	0	0
	2	Rapid traverse constant inclination acceleration / deceleration	0	0	0	0	0	0	0	0
	3	Rapid traverse constant inclination multi-step acceleration / deceleration	_	_	_	_	_	_	Δ	Δ
5	Th	read cutting								
	1	Thread cutting (Lead / Thread number designation)	0	0	0	0	0	0	Δ	Δ
	2	Variable lead thread cutting	0	0	0	0	0	0	_	_
	3	1 Synchronous tapping cycle	0	0	0	0	0	0	0	0
		2 Pecking tapping cycle	Δ	Δ	Δ	Δ	0	0	Δ	Δ
		3 Deep-hole tapping cycle	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	4	Chamfering	0	0	0	0	0	0	_	
	6	Circular thread cutting	Δ	Δ	Δ	Δ	_	_	_	_
	8	High-speed synchronous tapping (OMR-DD)	0	0	0	0	0	0	0	0
	10	Re-thread cutting	Δ	Δ	Δ	Δ	0			_
	11	Thread cutting override	Δ	Δ	Δ	Δ	0	_	-	_
	12	Variable feed thread cutting	Δ	Δ	Δ	Δ	0		_	—
	13	Thread cutting time constant switch	0	0	0	0		_	_	_
6	Ma	anual feed						1		
	1	Manual rapid traverse	0	0	0	0	0	0	0	0
	2	Jog feed	0	0	0	0	0	0	0	0
	3	Incremental feed	0	0	0	0	0	0	0	0
	4	Handle feed	0						0	0

	Series	MR0 G	Series	M8009
	M80 TypeB	M80 TypeA	M830S	M850S
When a lathe with linear axes (X, Z axes end face or in the longitudinal direction			_	_
the X and Z axes, to enable the milling a This function sets one of the axes of the				
with no actual movement), and perform view (view from the hypothetical axis) of	_	_	Δ	Δ
With this function, the rotary axis move		_	Δ	Δ
This function automatically generates s machining program, and performs inter-	_	0	Δ	Δ
This function realizes NURBS curve ma control point). The path does not need	_	_	Δ	Δ
An arc shape determined by three poin can be machined.	_	_	Δ	\triangle
This function automatically generates c curves. This enables smooth machining	—	0	Δ	Δ
The rapid traverse rate can be set inde	1000	1000	1000	1000
This function specifies the feedrate of the	1000	1000	1000	1000
The manual feedrates are designated a feedrate during dour up ON for automat	1000	1000	1000	1000
This function multiplies the rotary axis'	0	0	0	0
By issuing a G command, the commar	0	0	0	
minute (mm/min or inch/min). By issuing a G command, the commar	0	0		0
spindle revolution (mm/rev or inch/rev). This function can issue one block of ma	0	0		Δ
This enables the machining speed on the radius compensation is applied to the r	—	0	Δ	Δ
The feedrate registered by parameter in	0	0	0	0
By enabling a manual speed command automatic operation can be carried out	0	0	Δ	Δ
Feedrates can be specified for G00 (pc The speed of tool exchange, axis move	_	0	Δ	Δ
vibration can be suppressed.				
Override can be applied to manual or a	0	0	0	0
Override can be applied to the feedrate	0	0	0	0
Override can be further applied as a se By turning on the override cancel exter	0	0	0	0
automatic operation mode (tape, mem	0	0	0	0
Acceleration / deceleration is automatic using a parameter from the following ty	0	0	0	0
acceleration / deceleration and expone				
traverse mode. Compared to the method onables improved	0	0	0	0
This function carries out the acceleratio				
mode during automatic operation. (This multi-step acceleration / deceleration m	0	0	Δ	\triangle
the motor ability to the maximum.				
Thread cutting with a designated lead of	0	0	Δ	Δ
By commanding the lead increment / d	—	—	_	_
This function performs tapping through taps and enables tapping to be conduc	0	0	0	0
The load applied to the tool can be red bottom with a multiple number of pass	0	0	Δ	Δ
In the deep-hole tapping, the load appl workpiece to the hole bottom with a m	0	0	Δ	Δ
Circular thread in which the lead is in lo				_
The servo axis directly detects and con over the high-speed optical servo netw increased	0	0	0	0
The function stores a thread groove po tool can pass along the memorized por	_	_	_	_
The thread cutting feedrate can be cha				
This function changes the cutting feedr during thread cutting can be changed.	_	_	_	_
"Thread cutting time constant" can be a tread cutting.	_	_	_	_
The tool can be moved at the rapid trav				
by means of the rapid traverse override	0	0	0	0
The tool can be moved in the axis direct	0	0	0	0
The tool can be moved for the designal The machine can be moved in very sm	0	0	0	0
				<u> </u>

4

M800/M80 SERIES SPECIFICATIONS LIST

General explanation

s) and rotary axis (C axis) serving as the control axes is to perform milling at a workpiece of the workpiece, this function uses the hypothetical axis Y, which is at right angles to both shape to be programmed as the X, Y and Z orthogonal coordinate system commands. e helical interpolation or spiral interpolation, including a linear axis, as a hypothetical axis (axis is pulse distribution. This enables SIN or COS interpolation, which corresponds to the side f the helical interpolation or spiral interpolation.

ment is changed into exponential functions vis-a-vis the linear axis movements. pline curves that smoothly pass through rows of dots designated by a fine-segment polation for the paths along the curves. This enables high-speed and high-accuracy

chining by commanding NURBS curve parameters (number of stages, weight, knot, to be replaced with fine segments ts (start point, intermediate point, end point) designated in the three-dimensional space

urves that smoothly pass in the tolerance error range, and moves on the paths along the

pendently for each axis using parameters. ne cutting commands, and gives a command for a feed amount per spindle rotation or

s the feedrate in jog mode or incremental feed mode for manual operation and the ic operation. The manual feedrates are set using external signals. command speed by ten during initial inching.

nd from the block is issued directly with a numerical value following F as the feedrate per

nd from the block is issued directly with a numerical value following F as the feedrate per

achining time (inverse) commands in F commands, in place of normal feed commands. he cutting surface to be constantly controlled and prevents the loss of accuracy, even if nachining program that expresses the free curve surface with fine segment lines. advance can be assigned by designating a single digit, following address F.

d and selecting either handle feed or jog (manual) feed in the memory or MDI mode, at this feedrate.

sitioning command)

ement of gantry, etc. can be specified with the machining program so that the mechanical

utomatic rapid traverse using the external input signal. e command designated in the machining program using the external input signal.

cond-stage override to the feedrate after the cutting feed override has been applied. nal signal, the override is automatically set to 100% for the cutting feed during the ory and MDI).

cally applied to all commands. The acceleration / deceleration patterns can be selected pes: linear acceleration / deceleration, soft acceleration / deceleration, exponent function nt function acceleration / linear deceleration.

eceleration at a constant inclination during linear acceleration / deceleration in the rapid od of acceleration / deceleration after interpolation, the constant inclination acceleration / cycle time.

n / deceleration according to the torque characteristic of the motor in the rapid traverse s function is not available in manual operation.) The rapid traverse constant inclination nethod makes for improved cycle time because the positioning time is shortened by using

an be performed. Inch threads are cut by designating the number of threads per inch with

ecrement amount per thread rotation, variable lead thread cutting can be performed.

synchronized control of the spindle and servo axis. This eliminates the need for floating cted at a highly accurate tapping depth.

uced by designating the depth of cut per pass and cutting the workpiece to the hole

ied to the tool can be reduced by designating the depth of cut per pass and cutting the ultiple number of passes.

thread cutting cycle by using external signals.

ngitudinal direction can be cut.

npensates the spindle's delay in tracking by using the communication between drive units ork. By minimizing the synchronization error, the accuracy of the synchronous tapping is

sition and compensates a start position of spindle thread cutting automatically so that the sition of the thread groove at the thread cutting execution. nged by changing the spindle override depending on rough cutting, finish machining, etc.

ate by the spindle override at the time of the thread cutting. The machining condition

applied to the acceleration / deceleration time constant of the NC control axis during the

verse rate for each axis separately. Override can also be applied to the rapid traverse rate function.

tion (+ or.) in which the machine is to be moved at the per-minute feedrate. ted amount (incremental value) in the axis direction each time the jog switch is pressed. all amounts by rotating the manual pulse generator.

					Lathe s	system	Machining center system			
		class	M800W	Series	M800S	Series	M80 S	Series	M800W	Series
	-		M850W	M830W	M850S	M830S	M80 TypeA	M80 TypeB	M850W	M830W
-	5	Manual feedrate B	0	0	0	0	0	0	0	0
	6	Manual feedrate B surface speed control	-	-	-	_	-	-	Δ	Δ
Ī	8	Manual speed clamp	0	0	0	0	0	0	0	0
7[Dw	rell								
	1	Dwell (Time-based designation)	0	0	0	0	0	0	0	0
ł	_		-							
	2	Dwell (Revolution-based designation)	0	0	0	0	0	0	_	_
Pro	gra	am memory / editing								
11	vie 1	Momony capacity (number of programs stored)								
-	+	500kB [1280m] (1000 programs)	0	0	0	0	0	0	0	0
	ł	1000kB [2560m] (1000 programs)	Δ	Δ	Δ	Δ	_	_	Δ	Δ
	ľ	2000kB [5120m] (1000 programs)	Δ	Δ	Δ	Δ	_	_	Δ	Δ
28	Edi	ting								
	1	Program editing	0	0	0	0	0	0	0	0
	2	Background editing	0	0	0	0	0	0	0	0
	3	Buffer correction	0	0	0	0	0	0	0	0
ŀ	+									
	5	Multi-part system simultaneous program editing	0	0	0	0	0	0	0	0
	6	Special program editing display for synchronization between part systems	Δ	Δ	Δ	Δ	0	0	Δ	Δ
Op	era	ation and display								
1 8	Str	ucture of operation / display panel								
	1	Color display (8.4-type LCD TFT)	_	_	_	_			-	-
	2	Color touchscreen display (10.4-type LCD TFT)	—	_					-	-
_	3	Color touchscreen display (15-type LCD TFT)	_						_	-
	6	Color touchscreen display (15-type LCD TFT / Windows8)				_	-	-		
20	Color touchscreen display (19-type LCD TFT / Windows8)						_			
2 1	qu T									
	1	Operation input	0	0	0	0	0	0	0	0
	2	Absolute value / Incremental value setting	0	0	0	0	0	0	0	0
	5	Displayed part system switch	0	0	0	0	0	0	0	0
	6	Menu list	0	0	0	0	0	0	0	0
	7	Display switch by operation mode	0	0	0	0	0	0	0	0
	8	External signal display switch	0	0	0	0	0	-	0	0
	9	Screen saver	0	0	0	0	0	0	0	0
	10	Parameter guidance	0	0	0	0	0	0	0	0
	11	Alarm guidance	0	0	0	0	0	0	0	0
	12	Machining program input mistake check warning	^	^	^	^	_	_	^	^
	14						0	0		
	14		_			0				
	10	De No estudo ester il	0	0	0	0	0		0	0
	16	PU-INU NETWORK AUTOMATIC CONNEction	0	0	0	0			0	0
	18	SBAM open parameter	0	0	0	0	0	0	0	0
-	10		-	-	-	-	-	-	-	-
	19	IVI I B selectable menu configuration	0	0	0	0	0	0	0	U
3[Dis	play methods and contents								
	1	Status display	0	0	0	0	0	0	0	0
	2	UIOCK DISPIBY	0	0	0	0	0		0	0
	0		U	0	0	0	0		0	0
	4	Setup screen display	0	0	0	0	0	0	0	0
	5	Edit screen display	0	0	0	0	0	0	0	0
	6	Diagnosis screen display	0	0	0	0	0	0	0	0
	7	Maintenance screen display	0	0	0	0	0	0	0	0
	8	Home application	0	0	_	_	_	_	0	0
					1			I		

	Corios		Machining ce		
-	Series	M80 3	Series	MISOUS Series	
Manual facebate Disc for after that an	мао турев	M80 TypeA	M830S	M850S	
Manual feedrate B is a function that set	0	0	0	0	
rotation speed is controlled according t	-	-	\triangle	Δ	
The maximum speed for manual feed of	0	0	0	0	
	-	_			
The G code command temporarily stop	0	0	0	0	
designated in the program.	0	0	0	0	
When G04 is commanded in the synch	_	_	_	_	
revolutions designated.					
	0	-	0	0	
Machining programs are stored in the r	0	0	0	0	
uspiay unit, etc.). (Note) for a multi-par				Δ	
This function anables program aditing s	0	0	0	0	
This function enables one machining of	0	0	0	0	
This function enables one machining p	0	0	0	- 0	
initiates single block stop and enables	0	0	0	0	
When an operation to open a machinin					
opened in the right and left areas at the	_	_	0	0	
being selected and the machining prog					
When the left and right edit areas are d					
the display is switched to the synchron	—	-	\triangle	Δ	
symbols.					
The setting and display unit consists of				_	
Refer to "HARDWARE" described later					
(Note) For the color touchscreen displa					
hardware keyboard.				_	
		_			
In addition to the method of directly inn					
operators and function symbols can be	0	0	0	0	
When setting the data, the absolute / in	0	0	0	0	
The part system displayed on the scree		0	0	0	
The menu list function displays the me					
other screens.	0	0	0	0	
The screen display changes when the	0	0	0	0	
The screen display changes with the si	—	0	0	0	
The screen saver function protects the	0	0	0	0	
This function displays the details of the	0	0	0	0	
displayed.		0	0	0	
Guidance is displayed for the alarm cur	0	0	0	0	
If an illegal input is found in the decimal	_	_			
message will appear.	-				
This function allows to output a bitmap	0	0	0	0	
display (non display solution	0	0	0	0	
This function supports to restore the or			0	0	
This function can set or change the use		_	0	0	
This function can set or change the SB	0	0	0	0	
Menu items on the "Monitor" "Setun"	0	0	0	0	
hidden as desired. The custom screen	0	0	0	0	
The status of the program currently bei	0	0	0	0	
The clock is built in, and the date (year.	0	0	0	0	
Various information related to operation	0	0	0	0	
Tool / workpiece related settings, user				-	
pallet program registration (option) can	0	0	0	0	
Machining program editing (addition, d	0	0	0	0	
output can be carried out.	0		0	· ·	
The following operations related to the					
(1) Display the hardware and software (
(2) Display the CNC options.	0	0	0	0	
(4) Display the drive unit information					
(5) Display the alarm message / alarm h					
Parameter setting and display and NC	0	0	0	0	
19-type vertical display unit has the exr			~	-	
	_		—	-	

4

M800/M80 SERIES SPECIFICATIONS LIST

General explanation

ts an arbitrary axis feedrate from the user PLC separately from the manual feedrate. rate B function by moving the orthogonal axis while rotating the rotary table, the table to the distance from the rotation center.

can be switched to the rapid traverse rate or the manual feed clamp speed.

ps machine movements and sets the machine in the stand-by status for the time

nronous feed mode (G95), the machine waits for the spindle to rotate for the number of the

NC memory, data server or external memory devices (front SD card, built-in disk of art system, the specifications shown here is the total for all part systems

such as correction, deletion and addition.

rogram to be created or edited while another program is running.

nemory, tape, SD card or Data Server (DS) operation) or MDI operation, this function the next command to be corrected or changed.

ng program in the NC memory is performed on the edit screen, machining programs are same time; the specified machining program of the displayed part system in the edit area gram of another part system with the same name in the unselected edit area. isplaying the same named programs of different part systems stored on the NC memory,

ized display of the left- and right- side programs aligned using the timing synchronization

the setting part and the keyboard part.

for the details

ay (19-type LCD TFT / Windows8), only software keyboard is available and there is no

putting numeric data, a method to input the operation results using four basic arithmetic se used for specific data settings.

ncremental setting can be selected from the menu.

en can be changed. enu configuration of each screen as a list, making it possible to directly select the menu for

screen mode selection switch is changed.

ignal from PLC. display unit by turning the backlight OFF after the length of time specified in a parameter. e parameters or the operation methods according to the state of the screen currently

rrently issued.

point after the current cursor position, the cursor will move to that position, and a warning

file of a screen displayed on the setting and display unit. play order of the main menu in the "Monitor", "Setup" and "Edit" screens, and to change

onnection when the network connection fails between the display unit and the control unit. er backed up area of the PLC device from the NC screen.

AM open area for machine tool builders from the NC screen.

and "Edit" screens (of MITSUBISHI standard format) can be moved within a screen or menu items added by machine tool builders, on the contrary, cannot be moved or hidden.

ng executed is indicated.

month, date) and time (hour, minute, second) are displayed.

, such as the axis counter, speed display and MSTB command are displayed.

parameter settings, MDI editing, counter setting, manual numeric command issuing and be carried out.

eletion, change) and checking, simple program creation, and machining program input /

CNC diagnosis can be carried out. configuration.

history list etc.

data input / output, etc., can be carried out.

pansion applications that display the machine status, software keyboard, etc. in the lower half of the screen in no linkage with the upper half.

S/W ver.A4

		Lathe system Machining center system							
class	M800W	/ Series M830W	M800S	M830S	M80 S	M80 TypeR	M800W	M830W	
10 Additional languages	1105011	WOOUW	14105005	1410505	MOU TYPEA	ню турев	14105044	NICOUN	
1 Japanese									
2 English	0	0	0	0	0	0	0	0	
3 German									
4 Italian									
6 Spanish									
7 Chinese									
Traditional Chinese characters									
Simplified Chinese characters									
8 Korean									
9 Portuguese									
10 Hungarian									
12 Swedish									
13 Turkish									
14 Polish									
15 Russian									
16 Czech									
Input / Output functions and devices						_			
1 Machining program input / output	0	0	0	0	0	0	0	0	
2 Tool offset data input / output	0	0	0	0	0	0	Ő	0	
3 Common variable input / output	0	0	0	0	0	0	0	0	
4 Parameter input / output	0	0	0	0	0	0	0	0	
5 History data output	0	0	0	0	0	0	0	0	
7 System configuration data output	0	0	0	0	0	0	0	0	
1 BS-232C I/F	0	0	0	0	0	0	0	0	
2 SD card I/F				0		0		0	
1 Control unit-side SD card I/F [up to 32GB]	0	0	_	_	_	_	0	0	
2 Front-side SD card I/F [up to 32GB]	0	0	0	0	0	0	0	0	
3 Ethernet I/F	0	0	0	0	0	0	0	0	
4 Display unit-side data server I/F	0	0	0	0	0	0	0	0	
5 Front USB memory I/F [up to 32GB]	0	0	0	0	0	0	0	0	
1 Computer link B				^	0	0		Δ	
						L			
Spindle, Tool and Miscellaneous functions									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S)									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions						_			
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F	0	0	0	0	0	0	0	0	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F	0 0	0	0 0	0	0	0	0 0	0 0	
I Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch	0 0 0	0	0 0	0 0	0 0	0	0 0	0 0	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control	0 0 0 0 0 0	о о о 	О О О О О О	О О О О О	0 0 0 0 0	0 0 0 0	о 0 0 0 —	о о о Д	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control	о о о о о о о о о о о о о о	О О О — Д	О О О О О О А	О О О О О А	0 0 0 0 0	0 0 0 0 0 0 0	о о о 	о о о 	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 Scode output		о о о о			0 0 0 0 0 0 0 0		0 0 0 		
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output	Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	О О О О С С С С	О О О О О О О О О О	0 0 0 0 0 0 0 0 0			0 0 0 	0 0 0 	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control	Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	0 0 0 					о о о о о о о о	о о о о	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control		0 0 0 0 0 0 0					о о о о о о о о	о о о о о	
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override							Ο Ο Ο Ο Ο Ο Ο Ο Ο		
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override							Ο Ο Ο Ο Ο Ο Ο Ο Ο		
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control							ο ο ο ο ο ο ο ο ο ο ο		
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control I									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Spindle orientation									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Spindle orientation 7 Spindle orientation									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control II 6 Spindle override 7 Spindle position control (Spindle/C axis control)									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control II 6 Spindle override 7 Spindle position control (Spindle/C axis control) 1 Spindle position control (Spindle/C axis control) 1 Spindle position control (Spindle/C axis control)									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control II 2 Multiple-spindle control II 2 Multiple-spindle control II 3 Control (Spindle/C axis control) 4 Spindle position control (Spindle/C axis control) 1 Spindle position control (Spindle/C axis control) 2 C axis control during Spindle synchronization									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control II 2 Multiple-spindle control II 2 Multiple-spindle control II 2 Multiple position control (Spindle/C axis control) 1 Spindle position control (Spindle/C axis control) 2 C axis control during Spindle synchronization 3 Spindle synchronization I									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle analog I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control II 2 Multiple-spindle control II 3 Caxis control Qpindle/Caxis control) 1 Spindle position control (Spindle/Caxis control) 2 Caxis control during Spindle synchronization 8 Spindle synchronization 1 Spindle synchronization I 2 Caxis control during Spindle synchronization									
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control II 2 Multiple-spindle control II 2 Multiple-spindle control II 3 Constant surface speed control II 4 Spindle orientation 7 Spindle position control (Spindle/C axis control) 1 Spindle synchronization 2 C axis control during Spindle synchronization 8 Spindle synchronization I 2<	Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο								
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control II 2 Multiple-spindle control II 2 Spindle position control (Spindle/C axis control) 1 Spindle position control (Spindle/C axis control) 2 C axis control during Spindle synchronization 3 Spindle synchronization I 2 Spindle synchronization I	Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο								
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle analog I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control II 6 Spindle orientation 7 Spindle position control (Spindle/C axis control) 1 Spindle position control (Spindle/C axis control) 2 C axis control during Spindle synchronization 8 Spindle synchronization I 2 Spindle synchronization I 3 Guide bushing spindle synchronization I 3 Guide bushing spindle synchronization	Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο								
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle override 5 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control II 6 Spindle orientation 7 Spindle position control (Spindle/C axis control) 1 Spindle position control (Spindle/C axis control) 2 C axis control during Spindle synchronization 8 Spindle synchronization I 2 C axis control during Spindle synchronization 3 Guide bushing spindle synchronization I 2 Spindle synchron	Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο								
Spindle, Tool and Miscellaneous functions 1 Spindle functions (S) 1 Spindle control functions 1 Spindle control functions 1 Spindle digital I/F 2 Spindle analog I/F 3 Coil switch 4 Automatic coil switch 5 Encoder input I/F 6 Spindle-mode servo motor control 8 Turret gear change control 2 S code output 3 Constant surface speed control 4 Spindle control 1 Multiple-spindle control 1 Multiple-spindle control I 2 Multiple-spindle control II 6 Spindle orientation 7 Spindle position control (Spindle/C axis control) 1 Spindle position control (Spindle/C axis control) 2 C axis control during Spindle synchronization 8 Spindle synchronization I 2 C axis control during Spindle synchronization 1 Spindle synchronization I 2 Spindle synchronization I	Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο								

	Series	Machining center system 800S Series M80 Series				
	M80 TypeB	M80 TypeA	M830S	M850S		
	0	0	0	0		
Available display languages.						
	0	0	0	0		
	0	0	0	0		
Certain kinds of data handled by the N	0	0	0	0		
devices.	0	0	0	0		
	0	0	0	0		
	0	0	0	0		
Port 1 and 2 are available with the RS	0	0	0	0		
Interface card to use SD card can be		_	_	-		
Interface card to use SD card can be	0	0	0	0		
Ethernet interface card can be attached	0	0	0	0		
A built-in disk of display unit can be us	0	0	0	0		
A USB memory can be mounted.	0	0	0	0		
Computer link B is a function to receive	0	0	Δ	Δ		
The epindle rotation append is datamin						
operation or with manual numerical or						
This interface is used to connect the c	0	0	0	0		
	0	0	0	0		
Spindle control can be executed using	0	0	0	0		
Spindle control can be executed using Constant output characteristics can b	0			0		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s	0	0	0	0		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b	0	0	0			
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s	0	0	0	0		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed.	0 0 0	0	0	0		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can	0 0 0	0	0	0		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using	0 0 0 0	0 0 0	0 0 0 Δ	0 0 0		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function enables axes in the sem	0 0 0 0	0 0 0	0 0 0 0	0 0 		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function enables axes in the sem parameters according to the control in	0 0 0 0 0 0	0 0 0 -	0 0 0 	0 0 		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function enables axes in the sem parameters according to the control if When an 8-digit number following add can be spindled 20 bit bitspind the details	0 0 0 0 0 0 0	0 0 0 	0 0 0 0 0	0 0 <u>0</u> -		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control in When an 8-digit number following add non-signed 32-bit binary data and sta	0 0 0 0	0 0 0 	0 0 0 	0 0 <u>0</u> -		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function enables axes in the sem parameters according to the control in When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct	0 0 0 0 0 0	0 0 0 -	0 0 0 0 0			
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control ir When an 8-digit number following add onn-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workple speed.	0 0 0 0 0 0 0	0 0 0 	0 0 0 0 0 0			
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control if When an 8-digrunumber following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed).		0 0 0 0	0 0 0 0 0 0			
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control in When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0			
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control if When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro- during automatic operation or by mam Multiple-spindle control is a function th	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 Δ 		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can. This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control in When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the			0 0 0 0 0 0	0 0 Δ 		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function controls a spindle using the non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a				0 0 Δ 		
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function controls a spindle using the non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a With this function, commands to the						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control if When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin. This function, commands to the spindle is selected.						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control in When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function t with the second, third and fourth spin This function, commands to the s spindle is selected. This function stops the spindle rotation						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using this function enables axes in the sem parameters according to the control if When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a With this function, commands to the s spindle is selected.						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can. This function controls a spindle using This function controls a spindle using the control in When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindle is a With this function, commands to the s spindle is selected. This function enables one spindle drive						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function controls a spindle using the non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with this function, commands to the spindle is selected. This function stops the spindle rotation This function enables can spositioning This function enables can spositioning with control enables can spositioning						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function controls a spindle using the non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with this function, commands to the spindle is selected. This function enables one spindle driv This function enables casis positioning with each other. Under this control, th						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function controls a spindle using the nan 8-digit number following add con-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the re during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a With this function, commands to the s spindle is selected. This function enables one spindle driv This function enables C axis positioning with each other. Under this control, the						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using: This function controls a spindle using: This function controls a spindle using the sameters according to the control in When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a With this function, commands to the s spindle is selected. This function enables one spindle driv This function enables C axis positioning with each other. Under this control, the In a machine with two or more spindle						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can. This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control in When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function it with the second, third and fourth spin This function controls the spindles in a With this function, commands to the s spindle is selected. This function enables one spindle driv This control enables C axis positioning with each other. Under this control, the In a machine with two or more spindle spindle) in synchronization with the rol commands: G code and PLC.						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function enables axes in the sem parameters according to the control if When an 8-digit number following add on-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function th with the second, third and fourth spin This function controls the spindles in a With this function, commands to the s spindle is selected. This function enables one spindle driv This control enables C axis positioning with each other. Under this control, the In a machine with two or more spindle spindle) in synchronization with the ro commands: G code and PLC. This function is used for a machine with						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using When an 8-digit number following add con-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by mare Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a With this function, commands to the spindle is selected. This function enables one spindle driv This control enables one spindle driv This control enables one spindle driv This control enables control, th In a machine with two or more spindle spindle) in synchronization with the ro commands: G code and PLC. This function is used for a machine wit spindle) with the spindle motor used						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function controls a spindle using the non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the re during automatic operation or by man Multiple-spindle control is a function the with this function, commands to the spindle is selected. This function enables one spindle drive This function enables Casis positioning with each other. Under this control, the In a machine with two or more spindle spindle) in synchronization with the ro commands: G code and PLC. This function is used for a machine wit B spindle) with the spindle motor used						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function controls a spindle using This function controls a spindle using the man 8-dig turnber following add con-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the re during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a With this function, commands to the s spindle is selected. This function enables one spindle driv This function enables C axis positioning with each other. Under this control, the In a machine with two or more spindle spindle) in synchronization with the ro commands: G code and PLC. This function is used for a machine wi B spindle) with the spindle motor used With a machine equipped with two or						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using: This function controls a spindle using: This function controls a spindle using the motor speed. With this function controls a spindle using this function controls a spindle using this function controls a spindle using this function controls a spindle using the semparameters according to the control in When an 8-digit number following add non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the re during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a With this function, commands to the s spindle is selected. This function enables one spindle driv This function enables casis positioning with each other. Under this control, the In a machine with two or more spindle spindle) in synchronization with the ro commands: G code and PLC. This function is used for a machine wi B spindle) with the spindle motor used With th a machine equipped with two or polygon machining (IA) by controlling function in a machine with the or polygon machining (IA) by controlling function is used for a machine with the or polygon machining (IA) by controlling function is used for a machine with the or polygon machining (IA) by controlling function is used for a machine with two or polygon machining (IA) by controlling function is used for a machine with two or polygon machining (IA) by controlling function is used for a machine with two or polygon machining (IA) by controlling function is used for a machine with two or polygon machining (IA) by controlling function is used for a machine with two or polygon machining (IA) by controlling function is used for a machine with two or polygon machining (IA) by controlling function						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function enables axes in the sem parameters according to the control in When an 8-digit number following add onn-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a With this function, commands to the s spindle is selected. This function enables one spindle driv This control enables C axis positioning with each other. Under this control, the In a machine with two or more spindle spindle) in synchronization with the ro commands: G code and PLC. This function is used for a machine wi B spindle) with the spindle motor used With a machine equipped with two or polygon machining (IA) by controlling 1 rotary tool spindle and workpiece spin						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using This function controls a spindle using the non-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by man Multiple-spindle control is a function the with this function, commands to the spindle is selected. This function enables one spindle driv This function enables casis positioning with each other. Under this control, the spindle is selected. This function is used for a machine with the cach other. Under this control, the spindle) in synchronization with the rol commands: G code and PLC. This function is used for a machine with B spindle) with the spindle motor used With a machine equipped with two or polygon machining (IA) by controlling 1 rotary tool spindle and workpiece spin With a machine equipped with two or polygon machining (IA) by controlling 1 rotary tool spindle and workpiece spin With a machine equipped with two or						
Spindle control can be executed using Constant output characteristics can b spindle motor connections. This is a s the motor speed. With this function, arbitrary pulse can This function controls a spindle using This function controls a spindle using the na 8-digit number following add con-signed 32-bit binary data and sta With radial direction cutting, this funct direction coordinates and the workpie speed). This function applies override to the ro during automatic operation or by mar Multiple-spindle control is a function the with the second, third and fourth spin This function controls the spindles in a With this function, commands to the spindle is selected. This function enables one spindle driv This control enables C axis positioning with each other. Under this control, the In a machine equipped with the ro commands: G code and PLC. This function is used for a machine with B spindle) in synchronization with the ro commands: G code and PLC. This function is used for a machine with the spindle and workpiece spin With a machine equipped with two or polygon machining (IA) by controlling f rotary tool spindle and workpiece spin With a machine equipped with two or polygon machining (IB) by controlling f rotary tool spindle and workpiece spin With a machine equipped with two or polygon machining (IB) by controlling f						

M800/M80 SERIES SPECIFICATIONS LIST

anaral	ove	lonotion
enerai	exp	anation

G

NC system can be input and output between the NC system's memory and external

-232C interface. The connection point for a connector depends on the product model.

attached inside the NC control unit. attached in front of the NC control unit.

ed onto the NC unit.

ed.

e / send data between the host computer and the CNC

ned in consideration of the override and gear ratio for the S command given in automatic ommands, and the spindle is rotated.

igital spindle (AC spindle motor and spindle drive unit).

g an analog spindle instead of the digital spindle. achieved across a broad spectrums down to the low-speed ranges by switching the

ystem under which commands are assigned from the PLC. achieved across a broad spectrums down to the low-speed ranges by switching the ystem under which the CNC module switches the coils automatically in accordance with

be input by parameters set in R register.

the combination of servo motor and servo drive unit (MDS-E Series) which controls NC axis. -closed system to select four types of gear ratios which are set to the spindle specification put from the PLC.

lress S (S0 to S±99999999) is commanded, signed 32-bit binary data and start signal, or rt signal will be output to the PLC.

ion enables the spindle speed to be changed in accordance with changes in the radial ce to be cut with the cutting point always kept at a constant speed (constant surface

btation speed of a spindle or milling spindle assigned by the machining program command ual operation.

hat controls all the spindles except the first spindle (main spindle) in a machine tool equipped dles (sub-spindles) in addition to the first spindle.

a machine tool equipped with several spindles.

spindle are performed with one S command, and a signal from the PLC determines which

n at a certain position.

unit to be also used as the C axis (rotary axis) using an external signal. while a long workpiece is controlled by Front and Back spindles that are in synchronization e machine can perform milling at the center of workpiece.

es, this function controls the rotation speed and phase of one selected spindle (synchronized tation of the other selected spindle (basic spindle). There are two methods for giving

th a spindle motor to rotate a guide bushing. It synchronizes the guide bushing spindle (G / d as a reference (basic spindle).

r more spindles under serial connection control, this function enables spindle-spindle the workpiece spindle rotation in synchronization with the rotary tool spindle rotation. The dle are designated from the spindles subject to serial connection control. more spindles under serial connection control, this function enables spindle-spindle the rotary tool spindle rotation in synchronization with the workpiece spindle rotation. The ndle are designated from the spindles subject to serial connection control.

S/W ver.A4

			Lathe system Ma							Machining center system	
		class	M800W	Series	M800S	Series	M80 S	Series	M800W	/ Series	
		. Tool spindle synchronization LC (Spindle-NC avis	M850W	M830W	M850S	M830S	M80 TypeA	мао ТуреВ	M850W	M830W	
		Bolygon)	Δ	Δ	Δ	Δ	0				
	10	Tool spindle synchronization II (Hobbing)	Δ	Δ	Δ	Δ	0	-	_		
	11	Spindle speed clamp	0	0	0	0	0	0	0	0	
	10					-					
	14		Δ	Δ	Δ	Δ	0	_	_	_	
2	To	ol functions (T)									
	1	Tool functions (T command)	0	0	0	0	0	0	0	0	
3	Mi	scellaneous functions (M)						1			
	1	Miscellaneous functions	0	0	0	0	0	0	0	0	
	2	Multiple M codes in 1 block	0	0	0	0	0	0	0	0	
	_	M and a independent output	0	0		0			0		
	3	M code independent output	0	0	0	0	0	0	0		
	4	Miscellaneous function finish	0	0	0	0	0	0	0	0	
	5	M codo outout during axis traveling	0	0	0	0	0				
	0		0	0	0	0	0	0	0		
4	6 2n	Miscellaneous function command high-speed output	0	0	0	0	0	0	0	0	
-	1	2nd miscellaneous functions	0	0	0	0	0	0	0		
	Ľ		0	0		0					
	2	2nd miscellaneous function name extension	0	0	0	0	0	0	0	0	
То	ol d	compensation									
1	То	ol length / Tool position									
	1	Tool length offset	0	0	0	0	0	0	0	0	
	2	Tool position offset	_	_	_	_	_	_	0	0	
	_										
	3	Tool compensation for additional axes	0	0	0	0	0	0	-	-	
2	То	ol radius						1			
	1	Tool radius compensation	—	_	_	_	-	_	0	0	
	2	3-dimensional tool radius compensation	-	-	-	-	-	-	Δ	Δ	
	_										
	3	Tool hose radius compensation (G40 / 41 / 42)	0	0	0	0	0	0		_	
	4	Automatic decision of nose radius compensation direction (G46 / 40)	0	0	0	0	0	0	_		
	5	Tool radius compensation diameter designation	-	_	-	-	-	-	0	0	
3	То	ol offset amount									
	1	Number of tool offset sets									
		2 128 sets	0	0	0	0	_		_		
		3 200 sets	_	_	_	_	_	_	0	0	
		4 256 sets	—	—	—	—	0	_	-	_	
		5 400 sets	Δ	Δ		Δ			Δ		
	2	Offset memory									
	Ē	1 Tool shape / wear offset amount	0	0	0	0	0	0	0	0	
		Number of tool offect and allocation to unit suct as									
	3	(Variable number of per-part-system tool offset sets)	0	0	0	0	0	-	0	0	
Co	IOC	rdinate system									
1	Cc	pordinate system type and setting									
		Machine according to a state	~	~	~	~	~		~		
	1	iviachine coordinate system	U	0	0	0	0	0	0		
	2	Coordinate system setting	0	0	0	0	0	0	0		
	Ľ			0							
	3	Automatic coordinate system setting	0	0	0	0	0	0	0	0	
	4	Workpiece coordinate system selection				·					
		1 Workpiece coordinate system selection (6 sets)	0	0	0	0	0	0	0	0	
		2 Extended workpiece coordinate system selection (48 sets) G54.1P1 to P48	Δ	Δ	Δ	Δ	0	0	Δ	Δ	
		3 Extended workpiece coordinate system selection (96 sets) G54.1P1 to P96	_	_	_		_	_	Δ	Δ	
	_	4 Extended workpiece coordinate system selection (300 sets) G54.1P1 to P300	_						Δ	Δ	
	5	External workpiece coordinate offset	0	0	0	0	0	0	0	0	
	_									ļ	
	6	Workpiece coordinate system preset (G92.1)	0	0	0	0	0	0	~		
	Ľ		<u> </u>								
	7	Local coordinate system	0	0	0	0	0	0	0	0	

Magaza	Nachining C	enter syste	in Sorios	0
M850S	Magos	M80 TypeA	M80 TypeB	Gene
100000	14105055	шоо турея	ноо турев	This function controls the workpiece (spindle) and tool (NC
_				allowing polygon machining.
_	-		_	This function is to cut the gear with a hob (hob cutter).
	0	0	0	The spindle rotation speed is clamped between max. rota
				Spindles are controlled by superimposing the rotation spe
		-		when the tool spindle needs to be rotated with the superir
	1		1	The tool function is commanded with an 8 digit number fr
0	0	0	0	controller for a lathe, the tool compensation (tool length co
0	0	0	0	Miscellaneous function, or M function, is used to comman
0	0	0	0	Up to four sets of M commands can be issued in a block.
	-			When the M00, M01, M02 or M30 command is issued du
0	0	0	0	numerical command, the signal of this function is output.
				These signals inform the CNC system that a miscellaneou
0	0	0	0	miscellaneous function (A, B, C) has been issued, and that
				They include miscellaneous function finish signal 1 (FIN1) : This function controls the timing at which miscellaneous fi
-	-		-	axis reaches the designated position movement.
0	0	0	0	This function shortens a processing time per miscellaneou
	1			The ended data and sheet simple are extended to be a 20 dis
0	0	0	0	does not duplicate the axis name being used.
0		0	0	The 2nd miscellaneous function name same as the addition
0		0		the 2nd miscellaneous function with two characters.
		0		These commands make it possible to control the axis mo
		0	0	by the amount set in the tool compensation screen.
0	0	0	0	I his function uses commands to control the movement b positions which have been extended or reduced for a too
				The tool compensation for a lathe is valid for the X and Z a
			_	validated for the additional axis.
	1			This function provides tool radius compensation. Through
0	0	0	0	actual tool center path is compensated either inside or ou
				This command serves the function of compensating the s
		-	_	with the 3-dimensional vectors.
_	_	_	_	The tool nose of the specified tool No. is assumed to be a
				Circle touches the programmed path. The pose radius compensation direction is automatically of
			0	Tool diameter designation handles the compensation and
				compensation amount screen when tool radius compens
			-	
_	-	-	_	
	_	-	_	
0	0	-		The number of configurable sets of tool data such as tool
		0	0	
Δ	Δ	_	_	
0	0	0	0	This function registers the tool shape compensation and v
				There are two types of the allocation: "Arbitrary allocation"
0		-	_	arbitrarily and "Fixed allocation" which automatically alloca
				type can be selected using the parameter.
				This shows the coordinate systems handled by the NC. T
	1			points in the local coordinate system or machine coordina
0	0	0	0	I he machine coordinate system is used to express the principal that are specific to each machine, and it is autom
Ŭ		Ŭ	Ŭ	position return after power ON, or immediately after power
0	0	0	0	By issuing a G code, the program coordinate system (zero
		-		After turning the power ON, even without executing the re
0	0	0	0	workpiece coordinate system are set automatically.
	1			When multiple wordspieces with the same shape are to be
0	0	0	0	by executing a single machining program in the coordinat
Δ	Δ	0	0	In addition to the six workpiece coordinate systems G54 t
Δ ^		-		assigning G54.1Pn command.
		+		An external workpiece coordinate offset that serves as a
0	0	0	0	the workpiece coordinates. By setting the external workpi
				shifted, and all the workpiece coordinate systems can be
Δ		_	_	operation, as the workpiece coordinate system, w
				zero point by an amount equivalent to the workpiece coor
0	0	0	0	This function is for assigning another coordinate system in workpiece coordinate system to be changed temporarily
L	1	1	1	1

M800/M80 SERIES SPECIFICATIONS LIST

General explanation

pindle) and tool (NC axis) so that they synchronously rotate at the commanded ratio,

between max. rotation speed and min. rotation speed.

e spindles with designated amplitude and frequency.

ing the rotation speed of one spindle on the rotary speed of other spindle. Use this function ted with the superimposed speed on the spindle rotation speed.

In 8-digit number following the address T (T0 to T99999999) to specify the tool No. In the ation (tool length compensation, tool nose wear compensation) Nos. are also indicated.

is used to command auxiliary functions for NC, such as rotating the spindle forward / ning the cooling oil ON/OFF.

nmand is issued during an automatic operation (tape, memory, MDI) or by a manual function is output. It is turned OFF after the miscellaneous function finishes or by the reset

that a miscellaneous function (M), spindle function (S), tool function (T) or 2nd een issued, and that the PLC that has received it has completed the required operation. hish signal 1 (FIN1) and miscellaneous function finish signal 2 (FIN2). ich miscellaneous functions are output, and it outputs a miscellaneous function when the

novement. ne per miscellaneous function.

tput when an 8-digit number is assigned following the address code A, B or C . whichever a used.

same as the additional axes (A, B, C) can be used by specifying the command address of characters.

control the axis movement by offsetting the position of the end point of the travel command ation screen.

ol the movement by changing the end point positions of the movement commands to r reduced for a tool compensation amount.

lid for the X and Z axes. If an additional axis (Y axis) is added, the tool compensation will be

pensation. Through a combination of the G command and D address assignment, the I either inside or outside the programmed path by an amount equivalent to the tool radius. compensating the spherical radius of ball end mills. It compensates the actual tool center the programmed path by an amount equivalent to the tool radius amount in accordance

is assumed to be a half circle of the radius R, and compensation is applied so that the half

n is automatically determined from the tool tip and the specified movement vector. compensation amount as diameter value and compensates the amount set in the tool ol radius compensation (G41 / G42) is commanded.

I data such as tool length compensation and tool radius compensation.

ompensation and wear compensation amounts.

Arbitrary allocation" which allocates the number of tool offset sets to each part system automatically allocates the number of tool offset sets to each part system equally, and the

ndled by the NC. The points that can be commanded with the movement command are machine coordinate system.

d to express the prescribed positions (such as the tool change position and stroke end hine, and it is automatically set immediately upon completion of the first dog-type reference ediately after power ON if the absolute position specifications apply. dinate system (zero point of program) can be changed in the workpiece coordinate

out executing the reference position return, the basic machine coordinate system and the automatically.

ne shape are to be machined, these commands enable the same shape to be machined am in the coordinate system of each workpiece.

nate systems G54 to G59, 48 / 96 sets of workpiece coordinate systems can be used by

t that serves as a reference for all the workpiece coordinate systems is available outside the external workpiece coordinate offset, the external workpiece coordinate system can be ate systems can be simultaneously shifted by an amount equivalent to the offset. Dordinate system, which has been shifted by the programmed command or the manual system which has been offset by the programmed command (G92.1) from the machine the workpiece coordinate offset amount.

cordinate system in the workpiece coordinate system currently selected. This enables the

			Lathe system Machining center system								
		class	M800W	Series	M800S	Series	M80 S	Series	M800W	Series	
			M850W	M830W	M850S	M830S	M80 TypeA	M80 TypeB	M850W	M830W	
	8	Coordinate system for rotary axis	0	0	0	0	0	0	0	0	
	9	Plane selection	0	0	0	0	0	0	0	0	
	10	Origin set / Origin cancel	0	0	0	0	0	0	0	0	
	11	Counter set	0	0	0	0	0	0	0	0	
	13	Workpiece coordinate system shift	0	0	0	0	0	0	_	_	
21	Re	turn									
	1	Manual reference position return	0	0	0	0	0	0	0	0	
	2	Automatic 1st reference position return	0	0	0	0	0	0	0	0	
	3	2nd, 3rd, 4th reference position return	0	0	0	0	0	0	0	0	
	4	Reference position check	0	0	0	0	0	0	0	0	
	5	Absolute position detection	0	0	0	0	0	0	0	0	
	6	Tool exchange position return	0	0	0	0	0	0	0	0	
Op	ber	ation support functions									
	Pro	ogram control									
	1	Optional block skip	0	0	0	0	0	0	0	0	
	2	Single block	0	0	0	0	0	0	0	0	
21	Pro	ogram test	0	0	0	0	0	0	0		
	1	Dry run	0	0	0	0	0	0	0	0	
	2	Machine lock	0	0	0	0	0	0	0	0	
	2		0	0	0	0	0	0	0	0	
	4	Graphic check	0	0	0	0	0	0	0		
		1 Graphic check	0	0	0	0	0	0	0	0	
		2 3D solid program check	0	0	0	0	0	0	0	0	
	5	3 Graphic check rotary axis drawing	Δ	Δ	Δ	Δ	0	0	_		
	5	1 Graphic trace	0	0	0	0	0	0	0	0	
		2 Graphic trace rotary axis drawing	Δ	Δ	Δ	Δ	0	0	_	_	
	6	Machining time computation	0	0	0	0	0	0	0	0	
	7	Manual arbitrary reverse run (Program check operation)	Δ	Δ	Δ	Δ	0	0	Δ	Δ	
	8	High-speed simple program check	Δ	Δ	Δ	Δ	0	0	Δ	Δ	
31	Pro	ogram search / start / stop									
	1	Program search Sequence number search	0	0	0	0	0	0	0	0	
	3	Verification stop	0	0	0	0	0	0	0	0	
	4	Program restart	0	0	0	0	0	0	0	0	
	5	Automatic operation start	0	0	0	0	0	0	0	0	
	6	NC reset	0	0	0	0	0	0	0	0	
	1		0	- 0	- 0	-	- 0	- 0	-	0	
	8	Search & Start	0	0	0	0	0	0	0	0	
4	10 Int/	Auto-restart	0	0	0	0	0	0	0	0	
Π	1	Manual interruption	0	0	0	0	0	0	0	0	
	2	Automatic operation handle interruption	0	0	0	0	0	0	0	0	
	3	Manual absolute switch	0	0	0	0	0	0	0	0	
	4	Thread cutting cycle retract	0	0	0	0	0	0	_		
	5	Tapping retract	0	0	0	0	0	0	0	0	
	6	Manual numerical value command	0	0	0	0	0	0	0	0	
	7	Arbitrary reverse run	_	_	_	_	_	_	0	0	
	8	MDI interruption	0	0	0	0	0	0	0	0	
	9	Simultaneous operation of manual and automatic modes	0	0	0	0	0	0	0	0	

	Corios	Mon o	M800S Series	
	M80 TypeB	M80 TypeA	M830S	M850S
The rotary axis includes the rotating type	поо турсь	шоо турся	110000	MOODO
all coordinate position linear type). The v 99999.999° for the linear type.	0	0	0	0
By issuing a G code, it is possible to sp commands.	0	0	0	0
Origin set is a function that shifts the co coordinate system containing the work	0	0	0	0
deviated amounts, and shifts to the des The relative position counter can be set	0	0	0	0
When a workpiece coordinate system v coordinate or a workpiece coordinate s	_	_	_	_
system can be shifted to the workpiece performed without modification of the n				
This function enables the tool to be retu	0	0	0	0
By commanding the G code during an is commanded, a positioning is made to	0	0	0	0
As in the automatic 1st reference position	0	0	0	0
By issuing a G code, a machining progr	0	0	0	0
With this function, a battery stores the m	0	0	0	0
By specifying the tool change position in	0	0	0	0
program, the tool can be changed at th	0	0		0
When " / " (slash code) is programmed turned ON for automatic operation, the	0	0	0	0
When "/n (n:1 to 9)" is programmed at t turned ON for automatic operation, the	0	0	0	0
The commands for automatic operation	0	0	0	0
aigi idi.				
F code feed commands for automatic of turning ON the dry run input signal.	0	0	0	0
When the machine lock input signal is s	0	0	0	0
When the "External input" signal or "Mis miscellaneous function) will not be outp	0	0	0	0
	0	0	0	0
This function traces the programmed m	0	0	0	0
drawing and also rotary axis drawing. B	_	_	_	_
This for the two set the second in the life	-			-
operation, and the tool tip movement p	0		0	_
This function analyzes the machining pr	0	0	0	0
The manual arbitrary reverse run can be	0	0	Δ	Δ
MDI mode in proportion to the manual f This function checks whether a program	-	-		_
estimated machining time can be check	0	0	Δ	Δ
This function specifies the program No.	0	0	0	0
Blocks can be indexed by setting the pr	0	0	0	0
This function enables the single block si switch ON.	0	0	0	0
When a machining program is to be res function searches the program and the	0	0	0	0
With the input of the automatic operation found by an operation search is started	0	0	0	0
This function enables the controller to b	0	0	0	0
When the feed hold signal is set to ON If the "Search & Start" signal is input wh	0	0	0	0
executed from the beginning.	0	0	0	0
A machining program is restarted auton		0		
Manual interrupt is a function that enabl	0	0	0	0
The handle command can interrupt and the machine by rotating the manual puls	0	0	0	0
The program absolute positions are up the manual absolute switch signal is tur	0	0	0	0
This function suspends the thread cuttin	_	_	_	-
It tapping is interrupted by a reset or en workpiece, the tap tool engaged inside inputting the tap retract signal.	0	0	0	0
On the screen of the setting and display executed by setting numerical values or	0	0	0	0
This function allows a program to run th		0	0	0
This function enables MDI programs to status is changed in a MDI program the	0	0	0	0
This function enables manual operation (tape, MDI or memory) and manual more	0	0	0	0
based on the PLC is also possible.)				

M800/M80 SERIES SPECIFICATIONS LIST

S/W ver.A4
General explanation
e (short-cut valid / invalid) or the linear type (workpiece coordinate position linear type, workpiece coordinate position range is 0 to 359.999° for the rotating type, and 0 to
ecify the planes for the arc, tool radius compensation, coordinate rotation and other
pordinate system so that the current position is set as the zero point in the workpiece piece coordinate system's offset value. Origin cancel is a function that manually cancels all signated zero point with the workpiece offset.
It o an arbitrary value from the setting and display unit screen. which is considered at programming is misaligned with an actual set workpiece set by automatic coordinate system setting, the measured workpiece coordinate a coordinate system at the program creation so that the machining can be nachining program.
imped manually to a position specific to the machine (reference position)
automatic operation, the 1st reference position return is executed. If an intermediate point o the point at rapid traverse rate, then each axis returns to its 1st reference position. on return, by commanding the G code during an automatic operation, an axis returns to a
(2nd / 3rd / 4th reference position). ram where the tool is programmed to start off from the reference position and return to the
e tool will return successfully to the reference position. relation of the actual machine position and the machine coordinate kept in the CNC even
ic operation is enabled without executing a reference position return. in a parameter and also assigning a tool change position return command in a machining
ne most appropriate position.
at the head of a block, and the optional block skip input signal from the external source is block with the " / " code is skipped.
the head of a block, and the optional block skip input n signal from the external source is block with the "/n" code is skipped.
n can be executed one block at a time (block stop) by turning ON the single block input
operation can be switched to the manual feedrate data of the machine operation board by
set to ON, the CNC operations can be executed without actually moving the NC axis.
scellaneous function lock signal is turned ON, the output signals of M, S, I, and B (2nd put to the PLC. This is useful when checking only travel commands in a program check.
novement path without executing an automatic operation. It enables three-dimensional By using this function, machining programs can be checked before they are actually run.
machine positions. It draws the movement path of an actual automatic or manual ath. The function also monitors the machine operations during machining. It enables the
rogram without moving the axis and calculates the approximate time required for
e performed by controlling the feedrate being in the automatic operation in the memory or feedrate by jog or the rotation speed by manual handle.
n error occurs by operating the machining program without the axes movements. The ked in time shorter than the actual execution time of the machining program.
of the program to run outomatically and calls the program
rogram No., sequence No, and block No, of the program to run automatically.
top status to be established at any block without having to turn the SINGLE BLOCK
sumed after suspended midway due to tool damage or for some other reason, this block to resume and enables machining to be resumed from the block.
on start signal (change from ON to OFF), automatic operation of the program that was by the controller (or the halted program is restarted).
during automatic operation, the machine feed is immediately decelerated and stopped. - on the memory mode is selected, the designated machining program is searched and
matically at the completion of the machining program execution
les manual operations to be performed during automatic operation.
a ce superin inpused o no a commandia without suspending automatic operation to move lse generator during automatic operation. datad by an amount equivalent to the distance buublish the tool is resured menual buubas.
dealed by an amount equivalent to the distance by which the tool is moved high lidelity when med ON.
ng cycle in a reed hold signal has been input during thread cutting cycle. nergency stop signal that is input during tapping and the tap is left engaged inside the taburgence can be reuted in the surger direction as that it will be discovered to
ane workpiece can be rotated in the reverse direction so that it will be disengaged by

unit, the M, S and

ay unit, the M, S and T (and B when 2nd miscellaneous function is valid) commands can be and pressing [INPUT]. the executed blocks backward after the block stop in the automatic operation. o be executed during automatic operation in the single block stop status. When the modal the modal status in the automatic operation mode is also changed. ons to be performed during automatic operation by selecting an automatic operation mode ode (handle, step, jog or manual reference position return) simultaneously. (Arbitrary feed

				Lathe system			Machining center system			
		class	M800W	Series	M800S	Series	M80 S	Series	M800W	Series
	_		M850W	M830W	M850S	M830S	M80 TypeA	M80 TypeB	M850W	M830W
1	0 8	Simultaneous operation of JOG and handle modes	0	0	0	0	0	0	0	0
1	1 F	Reference position retract	0	0	0	0	0	0	0	0
1	2 Т	ool retract and return	_	_	_	_	_	_	Δ	Δ
1	3 5	Skip retract	_	_	_	_	_	_	0	0
1	4 F	PLC interruption	0	0	0	0	0	0	0	0
Pro	ara	m support functions								
1 N	lact	nining method support functions								
1	1 F	Program								
	1	Subprogram control	08layers	08layers	08layers	O8layers	08layers	O8layers	08layers	08layers
	2	Figure rotation	—	_	_	_	_	_	Δ	Δ
	3	Scaling	_	_	-	_	_	_	Δ	Δ
	4	Axis name switch	0	0	0	0	0	0	_	
2	2 1									
	1		O4layers	O4layers	O4layers	O4layers	O4layers	O4layers	O4layers	O4layers
	2	Machine tool builder macro	0	0	0	0	0	0	0	0
	3	Macro interruption	0	0	0	0	0	0	0	0
	4	variable command				_				
		3 700 sets	0	0	0	0	0		0	0
		4 8000 sets	Δ	Δ	Δ	Δ	_	_	Δ	Δ
		6 (600+100×number of part systems) sets	0	0	0	0	0	_	0	0
Ļ		7 (7900+100×number of part systems) sets	Δ	Δ	Δ	Δ			Δ	Δ
ć	3 -	Eixed cycle	0	0	0	0	0	0	0	
	2	Fixed cycle for drilling (Type II)	0	0	0	0	0	0		
	3	Special fixed cycle	_	_	_		_		Δ	Δ
	4	Fixed cycle for turning machining	0	0	0	0	0	0	—	—
	5	Compound type fixed cycle for turning machining	Δ	Δ	Δ	Δ	0	0	_	
	6	Compound type fixed cycle for turning machining (Type II)	Δ	Δ	Δ	Δ	0	0	_	
	7	Small-diameter deep-hole drilling cycle	Δ	Δ	Δ	Δ	_	_	0	0
4	+ 1	/irror image								
	1	Mirror image by parameter setting	0	0	0	0	0	0	0	0
	2	Mirror image by external input	0	0	0	0	0	0	0	0
	3	Mirror image by G code	_	_	_	—	_	_	0	0
	4	Mirror image for facing tool posts	0	0	0	0	0	_		
	5	T code mirror image for facing tool posts	0	0	0	0	0	_	—	-
Ę	5 0	Coordinate system operation								
	1	Coordinate rotation by program	^	^	^	_	0		^	_
	ŀ									
	2	Coordinate rotation by parameter	_	_				_	Δ	Δ
	3	3-dimensional coordinate conversion	_	_				_	Δ	Δ
e	3 C	Dimension input				1				
	1	Corner chamfering / Corner R	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	2	Linear angle command	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	3	Geometric command	0	0	0	0	0	0	Δ	Δ
L	4	Polar coordinate command	—	—	—	—	-	-	Δ	Δ
1	7 7	Axis control]
	¹	Chopping								
		1 Chopping	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	2	Normal line control	_	_	_				0	0
	3	Circular cutting	—	—	—	-	-	-	0	0
٤	3 N	Aulti-part system control								
	1	Timing synchronization between part systems	0	0	0	0	0	0	0	0
	2	Start point designation timing synchronization	0	0	0	0	0	0	0	0
	3	Mixed control								

	Series	M80 S	Series	M800S
	M80 TypeB	M80 TypeA	M830S	M850S
When executing the jog feed and hand	0	0	0	0
the jog mode signal and simultaneous When the retract signal is turned ON di	0	0	0	0
a set reference position. Even if the machining program's opera				٥ ٨
tool can be returned to the halted point	-	_	Δ 0	0
The interrupt program set with the R re	0	0	0	0
operation or during the manual mode.				0
When the same pattern is repeated du				
called from the main program as require	O8layers	O8layers	O8layers	O8layers
subprogram. When the subprogram is rotary phase can be easily created on t	_	_	Δ	Δ
The shape commanded by a program movement axis command position. The axis name switch function switche	0	0		△ —
In order to execute one integrated func	Ollavora	Odlavora	Alavora	Alavora
program. This function enables macro programs	O-Hidyei S	OHidyeis	OHiayers	
to the regular user macro programs. By inputting a user macro interrupt sign	0	0	0	0
can be called instead.	0	0	0	0
			_	_
Programming can be made flexible and	0	0	0	0
programs and by supplying the values	_	_	Δ	Δ
subtracting, multiplying and dividing) ca		0	0	0
These functions enable drilling, tapping	0	0	0	0
fixed cycles must always be used in co	0	0	Δ	Δ
The shape normally programmed in se	_	_	_	_
block. This function is useful for simplify				_
In deep hole drilling, cutting and retract	0	0	0	0
A parameter is used to designate the a run.	0	0	0	0
Signals from an external device (PLC) r program.	0	0	0	0
Using a program for the left or right side symmetrical shape is to be cut.	0	0	0	0
With machines in which the base tool p	_	_	_	_
When tools that correspond to tool Not post mirror image function has already		_	_	_
image ON) is established.				
When it is necessary to machine a com you can machine a rotated shape by p	0	0	Δ	Δ
If a deviation occurs between the work workpiece is mounted, the machine ca		_	Δ	Δ
alignment line deviation. With the 3-dimensional coordinate con				
parallel the zero point in respect to the	_	0	Δ	Δ
This function executes corner processi consecutive travel blocks.	0	0	Δ	Δ
The end point coordinates are automat end point coordinates and the linear an	0	0	Δ	Δ
When it is difficult to find the intersection be calculated automatically by program	0	0	Δ	Δ
With this function, the end point position	0	0	Δ	\triangle
This function continuously raises and lo	0	0	Δ	Δ
This function controls the swiveling of the and Y axes movement commands during the second se	_	0	0	0
In circular cutting, a system of cutting s	0	0	0	0
I along the inside circumference of the c			1	
along the inside circumference of the c				
along the inside circumference of the c The multi-axis, multi-part system comp independently. This function is used in systems are to be synchronized or in c	_	0	0	0

M800/M80 SERIES SPECIFICATIONS LIST

General explanation

le feed, both these feeds are available without changing the mode each time by inputting operation of jog and handle modes signal to the control unit. uring the automatic and manual operation, this function can retract the tool immediately to

tion is halted and the tool is retracted to change the tool or check the workpiece, etc., the (machining halted point) and resume machining.

ection opposite the travel direction when the skip signal is input during G31 command. gister is executed with the signals from the PLC during single block stop in program

ring machining, the machining pattern is registered as one subprogram, which can be ed, thereby realizing the same machining easily. This enables the efficient use of programs. on a concentric circle, one of the rotary machining patterns can be registered as a called from the main program, if the rotation center is designated, a path similar to the he concentric circle. This simplifies the creation of a program.

can be extended or reduced to the desired size by applying a scale factor to the

s the name of a command axis and a control axis.

tion, a group of control and arithmetic instructions can be used and registered as a macro

exclusively designed for use by a specific machine tool builder to be registered in addition

al from the PLC, the program being currently executed is interrupted and other programs

I versatile by designating variables instead of directly assigning numbers to addresses in of those variables as required when running the programs. Arithmetic operations (adding, an also be conducted for the variables.

and other hole machining cycles to be assigned in a simple 1-block program. Special mbination with fixed cycles.

veral blocks for rough cutting, etc. in the turning machining can be commanded in one ving machining programs

are repeated and the workpiece is machined multiple times. In addition, when PLC signals the time concerned is skipped. In this way, the load applied to the tool is reduced.

xis for which the mirror image function is to be executed before the machining program is

equest the mirror image operation either during or before the execution of a machining

e of an image, this function can machine the other side of the image when a left / right

post and the facing tool post are integrated in one post, this function enables the programs be executed by the tools on the facing side as well.

s. 1 to 64 are selected (T commands) but these are the tool Nos. for which the facing tool been designated with a parameter, the status equivalent to G68 (facing tool post mirror

plicated shape at a position that has been rotated with respect to the coordinate system rogramming the shape prior to rotation on the local coordinate system, and then specifying ngle by means of this coordinate rotation command.

piece alignment line and the machine coordinate system's coordinate axis when the n be controlled to rotate the machining program coordinates according to the workpiece

version function, a new coordinate system can be defined by rotating and moving in X, Y and Z axes of the currently set workpiece coordinate system

ng by automatically inserting a straight line or arc in the commanded amount between two

ically calculated by assigning one element (one component of the selected plane) of the

gle. n point of two straight lines with a continuous linear interpolation command, this point can ming the command for the angle of the straight lines. n is commanded with the radius and angle.

wers the chopping axis independently of program operation. During the grinding tter surface accuracy than using abrasive grain. he C axis (rotary axis) so that the tool is always pointing in the normal line direction for the X

ing program operation. teps are performed; first, the tool departs from the center of the circle, and by cutting

ircle, it draws a complete circle, then it returns to the center of the circle.

ound control CNC system can simultaneously run multiple machining programs cases when, at some particular point during operation, the operations of different part ases when the operation of only one part system is required. in the middle of a block by designating the start point.

				Lathe system						Machining center system		
		class	M800W	/ Series	M800S	Series	M80 S	Series	M800W	Series		
	Т		WUCON	IVIOSUVV	00000	100303	ию туреа	ию турев	WUCOIVI	IVIOSUVV		
		1 Mixed control (cross axis control)	Δ	Δ	Δ	Δ	0	_	-	_		
		2 Arbitrary axis exchange control	Δ		Δ	Δ	0	_	_	_		
	4	Control axis superimposition										
		1 Control axis superimposition	^	_	^	^	_	_	_	_		
		2 Arbitrary axis superimposition control	\triangle		Δ	Δ	-	-	-	_		
	5	Control axis synchronization across part systems	~	_	~	~	0	0	_			
	F					_	_	-				
	6	Balance cut	0	0	0	0	0	_	_	_		
	\vdash											
	7	Common memory for part systems	0	0	0	0	0	-	-	—		
	8	2-part system synchronous thread cutting	Δ	Δ	Δ	Δ	0	_	-	_		
	9	Multi-part system program management	0	0	0	0	0	_	0	0		
	10	Synchronization among part systems		1								
		1 Single block with part systems synchronized	Δ		Δ	Δ	0	0	_	_		
		2 Dwell / Miscellaneous function time override	Δ		Δ	Δ	0	0	-	—		
		3 Synchronization among part systems OFF	Δ		Δ	Δ	0	0	_	_		
	11	Sub part system control I	Δ		Δ	Δ	0	-	Δ	Δ		
	\vdash											
	12	Sub part system control II	Δ		Δ	Δ	0	_	Δ	Δ		
9	D	ata input / output by program	-		-	-		-		2		
	1	Parameter input by program	0	0	0	0	0	0	0	0		
	2	Compensation data input by program	0	0	0	0	0	0	0	0		
	3	Tool / Material shape input by program	0	0	0	0	0	0	0	0		
	Ě	API section and sub-section Nos-input (output by						<u> </u>				
	5	program	0	0	0	0	0	0	0	0		
	6	B-Navi data input by program	_	_	_	_	_	_	^	^		
10		Ashining model										
I.	1	Tapping mode	0	0	0	0	0	0	0	0		
	2	Cutting mode	0	0	0	0	0	0	0	0		
11	1 H	ligh-speed parts machining										
	1	Rapid traverse block overlap	Δ		Δ	Δ	0	0	Δ	Δ		
2 M	l ach	ning accuracy support functions										
1		utomatia agreer quarrida	0	0	0	0	0	0	0	0		
1			0		0	0	0	0	0	0		
2		eceleration check				<u> </u>			0	0		
	12	Exact stop check	0	0	0	0	0	0	0	0		
	3	Error detection	0	0	0	0	0	0	0	0		
	4	Programmable in-position check	0	0	0	0	0	0	0	0		
	5	Automatic error detection	Δ	Δ	Δ	Δ	_	_	_	_		
3 Hi	ah-«	speed and high-accuracy functions [kRPM: k Block per Minute]		I								
1	ΪH	ligh-speed machining mode										
	1	High-speed machining mode I (G05P1) maximum [kBPM]	∆33.7	∆33.7	∆33.7	∆33.7	033.7		∆33.7	∆33.7		
	2	High-speed machining mode II (G05P2) maximum [kBPM]	∆168	∆168	∆168	∆168	067.5	_	∆168	∆168		
2	H	ligh-accuracy control										
	1	High-accuracy control (G61.1 / G08)	Δ		Δ	Δ	0	-	Δ	Δ		
		Multi-part system simultaneous high-accuracy control *Lin										
	2	to two part systems for high-speed high-accuracy control	Δ		Δ	Δ	-	-	Δ	Δ		
	\vdash											
	3	SSS control	Δ		Δ	Δ	0	-	Δ	Δ		
	4	Tolerance control	^	~	^	^	0	_	^	^		
	H						<u> </u>					
	5	Variable-acceleration pre-interpolation acceleration /	_	_	_	_	_	_	Δ	Δ		
	Ĺ	deceleration							_	_		
	6	High-accuracy acceleration / deceleration time	_		_			_	Δ	Δ		
3	H	constant extension (1st part system only)										
F	1	High-speed high-accuracy control I (G05.1Q1) maximum [kBPM]	△67.5	△67.5	△67.5	△67.5	033.7	_	∆67.5	△67.5		
	2	High-speed high-accuracy control II (G05P10000) maximum [kBPM]	∆168	∆168	∆168	∆168	067.5		∆168	∆168		
	3	High-speed high-accuracy control III (G05P20000)	_	_	_	_	_	_	△270	△270		
	Ľ.	maximum [KBPM]										

	Sorico	Moo d	Sories	Macoo
	M80 TypeR		Magos	18505
This function enables any axis to be re	ию турев	NOU TYPEA	1410303	10303
commands: G code and PLC.	_	-	_	-
An arbitrary axis can be exchanged fre	_	_	_	_
exchanging an axis which can be com				
This function enables to superimpose				
methods for giving commands: G cod	-	-	_	-
The arbitrary control axis in other part :	_	_	_	_
control axis in own part system.				_
Synchronization control enables an art	_	_	_	_
The deflection can be minimized by ho				
synchronization to machine the workp	_	_	_	_
machining time is reduced.				
For a machine with multiple part system	_	_	_	_
System can be made common to all p This function performs synchronous th				_
Separate programs used in each part	_	0	0	0
		0		- I
Single block operation with part system				
synchronization among the part system	-	-	_	-
system has been stopped by single bl				
Override can be applied to dwell time a	_	_	_	-
Synchronization among part systems				
synchronization relation among part sy				
program feedrate by dry run. This fund	_	_	_	-
some of part systems when the sub part				
I his function activates and operates a	_	_	^	_
part system.				
This function activates and operates a				
systems enables parallel operation bet	-	-	\triangle	
system control II (G144).				
The perspectors get from the display of	0	0	0	0
The value of the workpiece coordinate	0	0	0	-
compensation amounts, that are set fr	0	0	0	0
Tool shape data on the tool managem	0	0		~
machining program.	0	0	0	0
NC internal data can be read / written	0	0	0	0
The R-Navi setup parameter can be se				
surface can be selected on the setup	_	Δ	\triangle	
When tapping mode commands are is	0	0	0	0
When a cutting mode command is iss	0	0	0	0
This function enables the next block to G30) Consequently cycle time of mar	0	0	\triangle	
				I
To prevent machining surface distortion	0	0	0	0
applies an override on the cutting feed	0	0	0	0
	-	-		- 1
T : <i>: : : : : : : : : :</i>	0	0	0	0
I his function decelerates and stops a	0	0	0	0
by a rapid change of recurate, and pre	0	0	0	0
This function is effective to reduce the		0	0	
machining.	-	-	_	-
This function runs a machining program	016.8	033.7	∆33.7	∆33.7
n no ha houor na ho a mach ni ni hg phograi	_	O67.5	∆168	∆168
Machining errors caused by delays in (0	0	\triangle	
High-accuracy control and high-speed				
high-accuracy control and high-speed	_	0	\triangle	
part systems which are limited by the				
With SSS (Super Smooth Surface) cor				
a fewer scratches and streaks on the	0	0	^	~
Multiple part systems simultaneous hid		0		
systems.				
This function enables the smooth oper	0	0	^	~
simple parameter adjustment.				
Therefore, the acceleration for the avia	_	_	^	
especially in the indexing machining		_		
This extends the upper limit of cutting			A	_
interpolation.	_	_	Δ	
A machining program that approximat	O16.8	033.7	△67.5	167.5
A machining program that approximat This function is effective in decreasing	016.8	O33.7 O67.5	∆67.5 ∆168	∆67.5 ∆168
A machining program that approximat This function is effective in decreasing which needs to make an edge at a cor control mode is turned ON automatics	016.8 — —	O33.7 O67.5 O135	△67.5 △168 △270	△67.5 △168 △270

23

M800/M80 SERIES SPECIFICATIONS LIST

S/W ver.A4
General explanation
aced with another axis between part systems. There are two methods for giving
y across part systems in the multiple part systems. The machining can be freer by anded for machining programs in each part system.
and control an axis in a part system with an axis in another part system. There are two and PLC.
stem can be moved by superimposing on the movement command for the arbitrary
ary control axis in another part system to move in synchronization with the movement ol axis. There are two methods for giving commands: G code and PLC.
ing tools simultaneously from both sides of the workpiece and using them in se (balance cutting). In addition, since the workpiece is machined by two tools, the
s, the common variables and tool compensation memory which exist for each part systems by setting the parameters.
ad cutting for the same spindle using the 1st and 2nd part systems.
stem, can be managed under a common name in a multi-part system.
synchronized is the function for executing single block operation while maintaining the when two or more part systems are operated in the multi-part system. When one part k stop, the other part systems pause in the cycle operation.
d miscellaneous function finish wait time of all part systems. The synchronization when the multiple machining programs are operated with override.
d feedrate change are turned OFF in a part of a machining program to eliminate a ems by single block operation with part systems synchronized or variation of a machining in is effective mainly in blocking the cycle operation pause or feedrate variation in only system control II function is being used.
non-operating part system (sub part system) in the multi-part system. An auxiliary axis the sub part system by commanding Sub part system control I (G122) from the main
non-operating part system (sub part system) in the multi-part system. Using sub part een an operating program in main part system and a program called with Sub part
be changed using machining programs.
vstems selected can be set or changed using program commands. The tool in the display can be input using program commands.
t screen and workpiece shape data of the 3D solid program check can be set with the
specifying the section number, sub-section number, part system number and axis
from the machining program. The setting value can be checked and the machining reen for the parameter set from the machining program.
ed, the CNC system is set to the internal control modes required for tapping.
d, the CNC system is set to the cutting mode that enables a smoothly cut surface.
tart (overlap) without waiting for positioning (G00) or reference position return (G28 / ning can be reduced.
due to increase in the cutting load when cutting corners, this function automatically te so that the cutting amount is not increased for a set time at the corner.
otor before executing the next block, which reduces the impact on the machine caused ints a corner from being machined round.
tension of cycle time for the cutting at the corner and realize the high edge accurate

n that approximates a free curve with fine segments at a high speed.

control systems can be inhibited. This function is useful for machining which needs to make from an inner route of curved shape. I machining mode are available respectively in all part systems. The simultaneous usage of

machining mode (including High-speed high-accuracy control I / II / III) are available only in arameter.

trol, the large area path information is used instead of just the angle between the blocks. t adversely affected by minute steps or waviness is possible. This enables machining with suffrage compared to the normal high-accuracy control function. gh-accuracy function is required to conduct the SSS control in the second or following part

ation within the tolerance error range. The desired machining result can be obtained with

tion / deceleration during SSS control by setting diverse acceleration to each axis. with high responsiveness can be larger than before so that cycle time can be reduced

eed time constant from 5,000 [ms] to 30,000 [ms] for acceleration / deceleration before

es a free curve with fine segments can be run at a high speed and with a high accuracy. the cycle time of machining dies with free curves. This function is also useful in machining mer or reduce a path error from inner route of curved shape because the high-accuracy

			Lathe system						Machining center system	
		class	M800W	Series	M800S	Series	M80 \$	Series	M800W	Series
T			M850W	M830W	M850S	M830S	M80 TypeA	M80 TypeB	M850W	M830W
		4 Smooth fairing	—	_	_	_	_	_	Δ	Δ
	4	Machining condition selection I	0	0	0	0	0	_	0	0
	5	Direct command mode	Δ	Δ	Δ	Δ	_	_	_	
4	Pro	ogramming support functions				1				
	1	Playback	\triangle	Δ		Δ	-	-	0	0
	4	Simple programming (NAVI MILL / LATHE)	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	5	G code guidance	0	0	0	0	0	0	0	0
3 N	lact	nine accuracy compensation								
1	Sta	atic accuracy compensation				1				
	1	Backlash compensation	0	0	0	0	0	0	0	0
	2	Memory-type pitch error compensation	0	0	0	0	0	0	0	0
	3	Memory-type relative position error compensation	0	0	0	0	0	0	0	0
	4	External machine coordinate system compensation	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	5	Circular error radius compensation	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	6	Ball screw thermal expansion compensation	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	7	Rotation center error compensation		_	_	_	_	_	Δ	Δ
	8	Position-dependent gradually increasing-type backlash compensation	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	9	Two-way pitch error compensation	Δ	Δ	Δ	Δ	0	0	Δ	Δ
2	Dy	namic accuracy compensation				1				
	1	Smooth high-gain (SHG) control	0	0	0	0	0	0	0	0
	2	Dual feedback	0	0	0	0	0	0	0	0
	3	Lost motion compensation	0	0	0	0	0	0	0	0
	4	OMR II (Backlash with filter)	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	6	OMR-FF	Δ	Δ	Δ	Δ	0	_	Δ	Δ
	7	Distance-coded reference position detection	Δ	Δ	Δ	Δ	-	_	Δ	Δ
1 A	uto	mation support functions								
1	Me	pasurement								
	1	Skip								
		1 Skip	0	0	0	0	0	0	0	0
		2 Multiple-step skip	0	0	0	0	0	0	0	0
		o Speed change skip	Δ							Δ
		6 Torque limitation skip	\triangle	Δ	Δ	Δ	0	_	Δ	Δ
	2	Automatic tool length measurement	0	0	0	0	0	0	0	0
	3	Manual tool length measurement 1	0	0	0	0	0	0	0	0
	4	Manual tool length measurement 2	0	0	0	0	0	0	0	0
	5	Workpiece coordinate offset measurement	0	0	0	0	0	0	_	
	6	Workpiece position measurement	_	_	_	_	_	_	0	0
	7	Rotation measurement		_				_	0	0
2	Too	ol life management								
	1	1 Tool life management I	0	0	0	0	0	0	0	0
		2 Tool life management II	0	0	0	0	0	0	0	0
		3 Tool life management III		_	_			_	0	0
_	1				1	1	1		1	

IV.	lachining c	enter syste	m	
M800S	Series	M80 3	Series	
M850S	M830S	M80 TypeA	М80 ТуреВ	
	Δ	0	-	A path can be smoothen by compensa executing a fine segment program to m
0	0	0	0	The machining condition parameter set
			0	finishing), and it can be switched accord By reducing the load applied during the
		-		programs expressed in fine segments a
			1	This function enables creation of a prog
0	0	0	0	mechanical handle feed.
	0	0	0	G code guidance is a function to display
		-	-	currently under editing. This is used whe
0	0	0	0	This function compensates the error (ba
0	0	0	0	Machine accuracy can be improved by (production errors, wear, etc.) of the fee
0	0	0	0	Machine accuracy can be improved by aging.
Δ	Δ	0	0	The coordinate system can be shifted b appear on the counters (all counters inc
Δ	Δ	0	0	With commands designated during arc factor such as servo delay.
	Δ	0	0	This compensates the axis feed error ca
Δ	Δ	_	_	In a machine with a rotary axis, there ma center. (In other words, "machine rotation compensating this error.
Δ	Δ	0	0	With this function, the gradually increasi movement direction is reversed can be the distance from the direction reversal
Δ	Δ	0	0	Two-way pitch error compensation func compensation amount when moving in
0	0	0	0	This is a high-response and stable position loop gain compared to the
0	0	0	0	Use position feedback with a motor-sid acceleration, use position feedback with gain. A machine-side detector (scale) is
0	0	0	0	This function compensates the error in circular cutting.
Δ	Δ	0	0	The OMR (Optimal Machine Response) viscosity coefficient, etc.) that can cause machining is achieved by carrying out fe during circular interpolation or quadrant
Δ	Δ	0	0	OMR-FF control enables fine control by the program command than the conver
Δ	Δ	_	-	This is a function where a distance-cod system.
				immediately and the remaining distance
0	0	0	0	This function realizes skipping by design
0	0	0	0	This function enables skip operations to
Δ	Δ	0	0	This function is used to change the feed
	Δ	-	-	Axis movement is performed in the torg
				This function moves the tool in the direct
Δ	Δ	-	-	measurement start position and measu difference between the coordinates whe
0	0	0	0	Simple measurement of the tool length
				[M system] When the tool is positioned
0	0	0	0	to the tool tip and registered it as the to [L system] A device with a built-in touch feed, the tool compensation amount ca
0	0	0	0	The external workpiece coordinate offse operations and inputting the workpiece
_	_	-	_	The workpiece position measurement fit the sensor contacting the workpiece wi are calculated from the measured coord
0	0	0	0	The offset of the rotary coordinate syste workpiece coordinate system offset (rot
0	0	0	0	
0	0	0	0	The tool usage is monitored by accumu [M system] A spare tool change function
0	0	0	0	[L system] The life of each tool (time and selected from the same group.
0	0	0	0	the group No

M800/M80 SERIES SPECIFICATIONS LIST

	S/W ver.A4
General explanation	
ating commanded positions of a machining program. This function is useful wh nachine smoothly at low speed or a rough machining program with long segme	en ent to
t which consists of parameters related to the high-accuracy control can be cor tion (such as part machining or die machining) or machining process (such as r rding to the purpose.	figured ough or
NC program analysis and interpolation to the minimum possible level, the ma are executed at a high processing speed.	chining
gram while proceeding with sample machining by manual (handle or job) feed o	or
/ILL (for machining center system) or NAVI LATHE (for lathe system). ay illustration of the contents or movements of the commanded format for the C ien creating or editing a machining program.	G code
acklash) produced when the direction of the machine system is reversed. v compensating the errors in the screw pitch intervals among the mechanical er ad screws.	rors
compensating the relative error between machine axes, such as a production	error or
by inputting a compensation amount from the PLC. This compensation amoun cluding machine position).	it will not
; cuturing, this function compensates movement toward the inside of the arcs ca	aused by a
aused by a ball screw's thermal expansion, etc. using the values set by the PL ray be a case where the actual rotation center deviates from the programmed on center error" may be observed.) Higher accuracy machining can be realized	C. rotation I by
sing-type lost motion which depends on the distance from the point where the compensated by controlling the variation of backlash compensation amount a point	machine according to
ction is used to compensate the pitch error in each direction by setting the pitch the positive and negative direction.	h error
ition control method using the servo system. SHG control realizes an approxim e conventional control method.	ately three-
de detector in ranges with high acceleration to enable stable control. In ranges th the machine-side detector (scale). This will make it possible to increase the p separately required.	with low osition loop
protrusion shapes caused by lost motion at the arc quadrant changeover sect	ion during
c) control function estimates the machine or motor model (moment of inertia, ck ea path error (deviation of the actual tool path from the programmed path). Hi feed forward control based on that model. This allows error cased by quadrant ts on the inner side of the path to be greatly reduced. OMR-II is a function that is the path error with this. Quadrant path compensation is included in OMR-II. y generating feed forward inside the drive unit and can realize the strict feedbac intional high-speed accuracy control.	one friction, gh-accuracy protrusions focuses on ek control to on detection
luring linear interpolation using the G31 command, machine feeding is stopped e is discarded to execute the commands in the next block.	1
nating a combination of skip signals for each skip command.	
d rate or to stop the movement by inputting the skip signal during the linear intr que limited status, and the axis movement command is suspended to proceed e reaches the designated torque skip value and the torque skip turns ON. ction of the tool measurement position by the commanded value between the irrement position. It stops the tool as soon as it reaches the sensor and calculat	erpolation. I to the next
ere the tool has stopped and the command coordinates, it registers this different hat tool. is done without a sensor.	ence as the
at the reference position, this function measures the distance from the reference of length compensation amount.	ce position manual
et data for the Z axis can be set by cutting the workpiece face by means of ma e mass unement sional.	anual
function is used to measure each axis' coordinate by installing a sensor on the ith the manual feed or handle feed. The surface, hole center and width center or dinates, and those calculated results are set in the workpiece coordinate offset em (rotation center and rotation angle) is measured, and the results are set to the intermediate and the surface and the results are set to the surface of the surface and the results are set to the intermediate and the surface and the surface and the results are set to the surface and the surfa	spindle and coordinates
tation center) and the parameters.	
ulating each tool's usage time or the frequency of use.	
in is added to the tool me that laget lieft to. Id frequency) is controlled, and when the life is reached, a spare tool of the sam	ne type is
ulating each tool's usage time and the frequency of use. This function is not co	ntrolled by

CNC SYSTEM

4

CNC SYSTEM

		Lathe system Machining center							enter system
	class	M800W	Series	M800S	Series	M80 S	Series	M800W	Series
	2 Number of tool life management acts	M850W	M830W	M850S	M830S	M80 TypeA	М80 ТуреВ	M850W	M830W
	2 Number of tool life management sets	_	_		_		0	_ 1	
	128 sets	0	0	0	0	_	_	_	_
	200 sets	_	_	_	_	_	_	0	0
	256 sets	—	—	—	—	0	—	—	—
	400 sets	Δ	Δ	Δ	Δ	_	_	Δ	Δ
	999 sets	Δ	Δ	Δ	Δ	_	_	Δ	Δ
;	Tool life management set allocation to part systems 3 (Variable number of per-part-system life management tools)	0	0	0	0	0	_	0	0
30	Dthers								
	Programmable current limitation	0	0	0	0	0	0	0	0
	2 Auto power OFF	0	0	0	0	_	_	0	0
	4 Load monitoring I	Δ	Δ	Δ	Δ	0	-	Δ	
	5 Power ON/OFF sequence	0	0	—	_	_	—	0	0
Sa	fety and maintenance								
18	Safety switches								
	1 Emergency stop	0	0	0	0	0	0	0	0
	2 Data protection key	0	0	0	0	0	0	0	0
20	Display for ensuring safety								
	1 NC warning	0	0	0	0	0	0	0	0
	2 NC alarm	0	0	0	0	0	0	0	0
	3 Operation stop cause	0	0	0	0	0	0	0	0
	4 Emergency stop cause	0	0	0	0	0	0	0	0
	5 Thermal detection	0	0	0	0	0	0	0	0
	6 Battery alarm / warning	0	0	0	0	0	0	0	0
3 F	Protection								
	1 Stroke end (Over travel)	0	0	0	0	0	0	0	0
	2 Stored stroke limit								
	1 Stored stroke limit I/II	0	0	0	0	0	0	0	0
	2 Stored stroke limit IB	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	3 Stored stroke limit IIB	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	4 Stored stroke limit IC	Δ	Δ	Δ	Δ	0	0	Δ	Δ
:	3 Stroke check before travel	_	_	_	_	—	_	Δ	Δ
	4 Chuck / Tailstock barrier check	0	0	0	0	0	0	-	_
	5 Interlock	0	0	0	0	0	0	0	0
	6 External deceleration	0	0	0	0	0	0	0	0
1	9 Door interlock	-	-	-				-	
	1 Door interlock I	0	0	0	0	0	0	0	0
	2 Door interlock II	0	0	0	0	0	0	0	0
	0 Parameter lock	0	0	0	0	0	0	0	0
	1 Program protection (Edit lock B, C)	0	0	0	0	0	0	0	0
	2 Program display lock	0	0	0	0	0	0	0	0
	3 Data protection by user's level	Δ	Δ	Δ	Δ	0	0	Δ	Δ
1	5 Vertical axis pull-up	0	0	0	0	0	0	0	0
	6 Machine group-based alarm stop	Δ	Δ	Δ	Δ	0	_	Δ	Δ
4 N	Aaintenance and troubleshooting								
	1 Operation history	0	0	0	0	0	0	0	0
	2 Data sampling	0	0	0	0	0	0	0	0
	3 NC data backup	0	0	0	0	0	0	0	0
	4 Servo tuning support								
	1 NC Analyzer2 (Note 1)	0	0	0	0	0	0	0	0
[5 Automatic backup	0	0	0	0	0	0	0	0
	8 Application error detection	0	0	0	0	_	_	0	0
	0 NC Configurator2 (Note 2)	0	0	0	0	0	0	0	0

N	lachining c	enter syste	m	
M800S	Series	M80 S	Series	
M850S	M830S	M80 TypeA	M80 TypeB	
_	_		_	
				-
				-
0	0	0	0	The max, sets of tools available for tool
_	_	-	-]
\triangle		-	-	
\triangle		_	_	1
_				The number of tool life management to
				There are two types of the allocation: "/
0	0	-	-	part system arbitrarily and "Fixed alloca
				a stom equally and the time can be as
				system equally, and the type can be se
0	0	0	0	This function allows the current limit val
				workpiece stopper, etc.
0	0	l _	l _	Auto power OFF function notifies that th
-	-			"automatic power OFF request" signal
~		0	_	This function aims at detecting tool wea
		-		and NC axes on a real time basis.
—	-		-	This function turns the power supply O
	1		1	All operations are stopped by the emer
0	0	0	0	movement of the machine is stopped by
				Mith the input from the user DLC it is n
0	0	0	0	with the input from the user PLC, it is p
				and display unit.
0	0	0	0	Warnings are output by the CNC system
0		Ŭ	<u> </u>	description of the warning appears on t
0			0	The alarms are output by the CNC syst
0			0	description of the alarm appears on the
0	0	0	0	The stop cause of automatic operation
-				When the "EMG" (emergency stop) me
0	0	0	0	stop can be confirmed.
0	0	0	0	When overheating is detected in the co
0	0	0	0	When it is time to change the batteries
0	0			when it is time to change the batteries,
	1		1	
0	0	0	0	Limit switches and dogs are attached to
0	Ľ	Ŭ Ŭ	Ŭ Ŭ	stopped by the signal input from the lim
0	0	0	0	
^	^	0	0	This function sets the greas prohibited t
		0	0	range and method
		0	0	l'ange and metrioù.
\triangle		0	0	
^		0	0	By commanding, from the program, the
4		Ŭ	Ű	coordinate system, entry into the inner
_	_	_	_	By limiting the tool nose point moveme
				of a programming error.
0				The machine movement will decelerate
0				When the interlock signal is turned OFF
				This function reduces the feedrate to th
0	0	0	0	been set to ON.
0				Linder the CE marking scheme of the E
0			0	a machina is maving is prohibited What
0				a machine is moving is promibled. Whe
0	0	0	0	control axes, establishes the ready OFF
-	-	-	-	are no longer driven.
0	0	0	0	This function is used to prohibit the cha
0	0	0	0	The edit lock function B or C inhibits ma
0			Ŭ	erased when these programs require p
0				This function allows the display of only a
0				screen, etc.
\triangle	Δ	0	0	Up to 8 levels of access permission hel
				This function prevents the tool from bre
0	0	0	0	interruption at low cutting speed
				When an alarm occurs for an axis this
\triangle		0	-	belonge
	I			
	1		1	This is a maintenance for the first t
0	0	0	0	This is a maintenance function which is
-				etc. This information is saved in the hist
0	0	0	0	The NC data sampling function sample
0			<u> </u>	drive unit, etc.). This data can be output
~	~			The NC data back up function backs up
0				The data can also be restored.
				With this function, the servic parameters
0	0	0	0	application that rups on a rocular pare
0				Mith this function custom date is inter
U				Analisation and a system data, ladder
0	0	_	-	Application error detection function obs
-	-			error such as screen lock is detected, the
0	0	0	0	NC Configurator2 runs on a personal o
_	, Ŭ	, Ŭ	. Ŭ	I parameters tool data and common var

(Note 1) Please contact us to purchase this tool.

(Note 2) Please contact us to purchase a full function version. A limited function version is also available free of charge.

M800/M80 SERIES SPECIFICATIONS LIST

S/W ver.A4

General explanation

l life management

ols can be set per part system. Arbitrary allocation" which allocates the number of tool life management tools to each ation" which automatically allocates the number of tool life management tools to each part elected using the parameter.

lue of the NC axis to be changed to a desired value in the program, and is used for the

he control unit's power can be turned OFF after shutting the display unit down by entering from user PLC to NC.

ar or degradation by detecting and monitoring the actual load (current value) on spindle

N/OFF, synchronizing the NC control unit and the HMI screen.

gency stop signal input and, at the same time, the drive section is stopped and the

possible to prohibit the parameter setting or deletion, and the program edit from the setting

m. When one of these warnings occurs, a warning number is output to the PLC and a the screen. Operation can be continued without taking further action. tem. When one of these alarms occurs, an alarm number is output to the PLC, and a e screen. Operation cannot be continued without taking remedial action. is shown on the display.

essage is displayed in the operation status area of the display, the cause of the emergency

ontrol unit, an overheat signal is output at the same time as the alarm is displayed. an alarm and warning are displayed.

to the machine, and when a limit switch has kicked a dog, the movement of the machine is mit switch.

I for the tool to enter. There are multiple types of prohibitions according to the prohibited

e boundary for prohibiting machine entry as a coordinate position in the machine side of that boundary can be prohibited. nt range, this function prevents the tool from colliding with the chuck or tail stock because

and stop as soon as the interlock signal, serving as the external input, is turned ON.

F, the machine starts moving again. he deceleration speed set by the parameter when the external deceleration input signal has

European safety standards (machine directive), the opening of any protection doors while en the door open signal is input from the PLC, this function first decelerates, stops all the status, and then shuts off the drive power inside the servo drive units so that the motors

anging of machine parameters. achining program B or C (group by machining program numbers) from being edited or rotection.

a target program (label address 9000) to be disabled for the program display in the monitor

lps to prevent you from dispatching defective works. akage, through pulling up the cutting tool during emergency stop or instantaneous power

s function performs an alarm stop only for the axes in a machine group to which the axis

s useful for tracing down the history and NC operation information and analyzing problems, tory data file, and can be displayed on the screen and output to a file. es the NC internal data (speed output from NC to drive unit, and feedback data from the ıt as text data.

up the NC parameters, etc., on a built-in disk of display unit or SD card.

rs can be automatically adjusted by connecting the CNC and NC Analyzer2, which is an onal computer.

program and custom software can be automatically backed up in case of system failure. serves applications such as MITSUBISHI standard screen or custom screen. When an his function saves information and data in the log to investigate the causes easily. computer to edit the NC data files required for NC control and machine operations such as riables.

class			MOODIA	Carrian	Lathe system		Machining center		enter system	
		class	M850W	M830W	M850S	M830S	M80 TypeA	M80 TypeB	M850W	M830W
5 S	afet	ty Function								
1	1 8	Safety observation	Δ	Δ	Δ	Δ	0	0	Δ	Δ
2	2 8	Smart Safety observation								
	1	Safety-related I/O observation	Δ	Δ	Δ	Δ	_	_	Δ	Δ
	2	Emergency stop observation	Δ	Δ	Δ	Δ	_	_	Δ	Δ
	3	Drive safety function SI S (Safely-I imited Speed)	^	^	^	^		_	^	^
		2 SLP (Safely-Limited Position)					_			
		2 SEP (Salely-Elifited Position)	Δ	Δ	Δ	Δ			Δ	Δ
		3 SOS (Safe Operating Stop)	Δ	Δ	Δ	Δ	_	_	Δ	Δ
		4 SSM (Safe Speed Monitor)	Δ	Δ	Δ	Δ	_	_	Δ	Δ
		5 SBC / SBT (Safe Brake Control / Safe Brake Test)	Δ	Δ	Δ	Δ	—	_	Δ	Δ
		6 SCA (Safe Cam)	Δ	Δ	Δ	Δ	_	_	Δ	Δ
		7 SS1 / SS2 (Safe Stop)	Δ	Δ	Δ	Δ	—	_	Δ	Δ
		8 STO (Safe Torque Off)	Δ	Δ	Δ	Δ	_	-	Δ	Δ
Driv 1.S	ie si iervi	system								
. 0	1 F	Feed axis								
	1	MDS-E-Vx								
	2	MDS-EH-Vx								
	3	MDS-EJ-Vx								
	5	MDS-EM-SPVx								
2	2 8	Spindle	_			_		_		_
		MDS-E-SPX								
	2	MDS-EH-SPX MDS-ELSPy								
	5	MDS-EJ-SFX MDS-EM-SPV/y								
2	1 F	Power supply								
-	1	MDS-E-CV								
	2	MDS-EH-CV								
Ma	chin	ne support functions								
1 P	LC									
1	I E	Built-in PLC processing mode	0	0	0	0	0	0	0	0
2	2 F	PLC functions								
	1	Built-in PLC basic function	0	0	0	0	0	0	0	0
	Γ	1 Index modification	0	0	0	0	0	0	0	0
		2 Multi-program [number of programs]	0120	0120	0120	0120	060	060	0120	0120
		3 Multi-project [number of projects stored]				<u> </u>		<u> </u>		~
		Number of PLC projects: 1	0	0	0	0	_	0	0	0
		Number of PLC projects: 6								
		4 Function block (FB)	0	0	0	0	0	0	0	0
		5 Label programming	0	0	0	0	0	0	0	0
	5	PIC exclusive instruction	0	0	0	0	0	0	0	0
Ļ	1-		0							9
2	1	Alarm message display	0	0	0	0	0	0	0	0
	2	P Operator message display	0	0	0	0	0	0	0	0
	3	Memory switch (PLC switch)								
		1 Memory switch (PLC switch) 32 points	0	0	0	0	0	0	0	0
		2 Memory switch (PLC switch) 64 points	Δ	Δ	Δ	Δ			Δ	Δ
	4	Load meter display	0	0	0	0	0	0	0	0
	5	User PLC version display	0	0	0	0	0	0	0	0
	7		0	0	0	0	0	0	0	0
2	4 F	Built-in PLC capacity	0		0	0	0		0	0
H	1	Standard PLC capacity [number of steps]	0128000	0128000	0128000	0128000	064000	032000	0128000	0128000
	2	Large PLC capacity: 256000 steps	Δ	Δ	Δ	Δ	_	_	Δ	Δ
	3	A Large PLC capacity: 512000 steps	Δ	Δ	Δ	Δ	_	_	Δ	Δ
Ľ	1	viacinine contact input / Output I/F	U	0	0	0	0	0	U	U
6	3 L 7 F	adder monitor PLC development	0	0	0	0	0	0	0	0
	1	On-board development	0	0	0	0	0	0	0	0

N	loohining o	ontor ovoto	-	
M800S	Series	M80.9	Series	
M850S	M830S	AsqvT 08M	M80 TypeB	-
				The safety observation function ensures
	Δ	0	0	shutting off the power, which reduces th
Δ	Δ	_	_	Using the dual circuits for processing sig execution of safety signal process logic r
	Δ	_		errors, which improves the safety of sign Emergency stop signal is doubled and o
				state, the whole system can be set in en
	Δ	_	_	Axis speed (command speed, FB speed
Δ	Δ	_	_	Axis absolute position (command positic range. Axis stop speed (command speed EB s
Δ	Δ	_	_	Axis stop position (command position, F range. Observe axis stop position deviation (diff exceeds the safe stop position deviation
Δ	Δ	_	_	This function uses the safety signals to in speed.
Δ	Δ	_	_	The brakes connected to motors are act circuit can activate the brakes even whe circuits for activating the breaks and the
Δ	Δ	_	_	This function uses the safety signals to in of safe position.
Δ	Δ	_	_	[Sare stop 1 (SS1)] STO function is active equal to or below the safe stop speed. [Safe stop 2 (SS2)] SOS function is active equal to or below the safe stop speed.
Δ	Δ	_	-	This function shuts OFF power supply to supply even when the other circuit is bro
				-
]
				CNC-dedicated drive units, spindle moto
				-
				_
			1	
0	0	0	0	An exclusive sequence program that con applicable to each machine can be creat
	0			
0	0	0	0	-
0120	0120	060	060	
0120	0120	000	000	Basic commands (bit processing comm
0	0	_	0	commands : 188 commands including c
Δ	Δ	0	_	identification, binary / BCD conversion, b
Δ	Δ	_	_	
0	0	0	0	
0	0	0	0	
0	0	0	0	PLC-dedicated instruction is provided fo carry out only by the basic instructions a
0	0	0	0	The contents of the alarms which have of display unit.
0	0	0	0	When some conditions occur where you separately from the alarm message.
0	0	0	0	PLC switches can be set on the setting
Δ	Δ	-		
0	0			A load meter can be displayed on the se
0	0	0	0	Ladder program can be edited while P
0	0	0	0	For PLC data protection, the file passwo
	-	-		
0128000	0128000	064000	032000	la dia amangana ang ang ang ang ang ang ang ang a
Δ	Δ	_	_	In the program memory, it is possible to
Δ	Δ	-		
0	0	0	0	The operation panel I/O unit or the remo output and the number of contacts requi
0	0	0	0	This function enables the operating statu
0	0	0	0	On-board refers generically to the PLC r

29

4

M800/M80 SERIES SPECIFICATIONS LIST

S/W ver.A4

General explanation

s safe access to the machine's working parts (e.g. for adjustment or preparation) without he time required to restart the machine.

ignals input / output to / from the machine (safety signal compare sequence) and dual made by users (safety PLC), if one circuit has broken down, the other circuit can detect nal process.

observed to see whether there is any error. When one emergency stop signal is in open mergency stop condition.

d) is observed doubly to see whether the speed exceeds the safe speed. ion, FB position) is observed doubly to see whether the position exceeds the safe position

speed) is observed doubly whether the speed exceeds the safe stop speed. FB position) is observed doubly whether the position exceeds the safe stop position

ifference between command position and FB position) doubly to see whether the deviation

inform that the axis speed (command speed, FB speed) is equal to or below the safe

ctivated by this function. Because there are two circuits for activating the brakes, one en the other circuit is broken down. Furthermore, Safe Brake Test (SBT) can diagnose the e effectiveness of the brakes (deterioration due to abrasion, etc.). inform that the axis absolute position (command position, FB position) is within the range

vated after an axis is decelerated and the speed (command speed, FB speed) becomes

vated after an axis is decelerated and the speed (command speed, FB speed) becomes

axes. Because there are two power shutoff circuits, one circuit can shut OFF the power ken down.

tors, and servo motors are used.

ntrols various signals between the controller and the machine to realize the operations ated and built in.

nands) : 43 commands including LD, LDI, OR, ORI, AND, ANI, OUT, PLS, etc. Function data transfer, 4 basic arithmetic operations, logic arithmetic operations, large / small branching, conditional branching, decoding, encoding, etc.

or some limited applications, enabling a complex machining process, which is difficult to and function instructions.

occurred during sequence (user PLC) processing can be displayed on the setting and

u wish to inform a messages to the operator, an operator message can be displayed

and display unit screen, and the ON/OFF control executed.

etting and display unit.

in the software list on the Software Configuration screen.

PLC is running. This function is available, either by GX Developer or PLC onboard edit. ord can be set to each file of PLC data.

store the system area of parameters, intelligent function module parameters, sequence ce initial values.

ote I/O unit is selected based on the types of signals (sink / source) available for input or uired.

tus of the sequence circuit to be checked on the controller's setting and display unit.

related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer).

				Lathe s	system			Machining center system		
		class	M800W	Series	M800S	Series	M80 S	Series	M800W	Series
			101850W	101830W	M8505	M8305	мао туреа	мао турев	WI850W	10183000
		2 MELSEC development tool (GX Developer)	0	0	0	0	0	0	0	0
	8	PLC parameter	0	0	0	0		0	0	
		2 PLC constant extension (Up to 755 points)	0	0	0	0			0	0
	10	Pallet program registration	_	_	_	_	_	_	^	^
2	Ma								_	
	1	Servicio OFF	0	0	0	0	0	0	0	0
	2		0	0	0	0	0	0	0	0
	2		0	0			0	0		
	3	Synchronous control	Δ	Δ	Δ	Δ	0	0	Δ	Δ
	4	Inclined axis control	Δ	Δ	Δ	Δ	0	0		_
	5	Position switch	024	024	O24	O24	024	024	O24	024
	7	Index table indexing	0	0	0	0	0	0	0	0
	8	Tool length compensation along the tool axis	_	_	_	_	_	_	Δ	Δ
	9	Tool handle feed & interruption	—	_	_	_	_	_	Δ	Δ
	10	Tool center coordinate display	_	_				_	Δ	_
	11	Tool center point control	-	_					Δ	_
	12	Inclined surface machining command 3-dimensional tool radius compensation (Tool's vertical-	_							Δ
	14	direction compensation)							Δ	Δ
	15	Workpiece installation error compensation	_	_	_	_		_	Δ	_
	16	3-dimensional manual feed	_	_	_	_	_	_	Δ	Δ
	17 20	R-Navi Real time tuning	_	_	_	-		_	Δ	Δ
	20									
		1 Real-time tuning 1 (speed gain)	Δ	Δ	Δ	Δ	0	_	Δ	Δ
	21	Constant torque control	Δ	Δ	Δ	Δ	_	_	_	_
3	PL	C operation								
	1	Arbitrary feed in manual mode	0	0	0	0	0	0	0	0
	2	Circular feed in manual mode	\triangle	Δ	Δ	Δ	-	-	Δ	Δ
	3	PLC axis control	0	0	0	0	0	0	0	0
	5	PLC axis indexing	0	0	0	0	0	0	0	0
4	PL	C interface								
	1	CNC control signal	0	0	0	0	0	0	0	0
	2	CNC status signal	0	0	0	0	0	0	0	0
	3	PLC window	0	0	0	0	0	0	0	0
	4	External search	0	0	0	0	0	0	0	0
	5	Direct Screen Selection	0	0	0	0	0	0	0	0
5	Ma	achine contact I/O								
	1	1 DI-64 / DO-64				_		_	Π	
		2 DI:64 / DO:64+SDI:8			_	_	-	_		
		3 DI:96 / DO:64	_	_					_	
	2	Hemote I/U	п	п		п		п		
		2 DI:64 / DO:48								
		3 DI:64 / DO:48+AO:1								
		5 DI:16 / DO:8								
		6 DI:32 / DO:32+SDI:8 / SDO:4								
6	Ext	ternal PLC link								
	1	CC-Link (Master / Slave)								
	2	PROFIBUS-DP (Master)								

	Series	M80 S	Series	M800S
	M80 TypeB	M80 TypeA	M830S	M850S
This function enables the data of the	0	0	0	0
Developei.				
The PLC constants set with the data	0	0	0	0
as the parameters to use in the built	;	-	0	0
Pallet program function assists the r pallet changer.	_	-	Δ	Δ
When the servo OFF signal (per axis mechanically clamped, this function	0	0	0	0
This function enables the control axi	0	0	0	0
The synchronous control is a control by designating the travel command	0	0	Δ	Δ
Even when the control axes in a ma programmed and controlled in the s	_	-	-	-
Instead of a dog switch on a machin position to show the axis name and	024	024	O24	024
the PLC interface.	0			
 (1) Changing the tool length competition 	0	0	0	0
Z axis direction because the rotary a (2) Machine configuration The tool le	-	-	Δ	Δ
nose axis (rotary axis). This function makes it possible to m				
X and tool diameter direction Y in th	- 1	-	\triangle	\triangle
The tool center coordinates, handle				
tool center point control function, to	- 1	-	-	\triangle
(tool axis direction handle feed, tool				
(table coordinate system) which rota	-	-	-	\triangle
An arbitrary spatial plane defined with		0	Δ	Δ
This function is to compensate the t		-		
workpiece direction and inclination of		_	Δ	Δ
This function is used for a 5-axis ma	_	_	_	\triangle
system to enable machining accord				
INCREMENTAL) in the coordinate s	_	0	Δ	Δ
according to the tool angle or the in		Ũ	_	-
This provides easy setup of index m	- '	0	\triangle	\triangle
This function estimates the inertia (o		_	^	^
fluctuation as well as reduction of m	_	0		Δ
The servo motor of the axis designa				
direction.				
The servo motor of the axis designa		_	_	_
stopper direction.				
This function enables the feed direct	0	0	0	0
By specifying a hypothetical coordin			0	
interpolation is executed with jog / h	— i	-	Δ	Δ
This function allows independent ax	0	0	0	0
By setting positioning points (station	0	0	0	0
No. (station No.).	-	-	-	-
Control commands to the CNC syst				
also be used.	0	0	0	0
The status signals are output from the	0	0	0	0
This function uses the "read window	0	0	0	0
operation status, axis information, p		-	-	-
No. can be designated. In addition.	0	0	0	0
This signal allows an automatic trans	0	0	0	0
Ŭ				
	_	-	_	_
Some types of signals can be input	_	-	_	-
Some types of signals can be input				
are used by being connected to the				
Multiple remote I/O units can be use				
		-		
	-	_		
NC unit can be directly connected t				
NC can input / output devices to / fi				<u> </u>
PROFIBUS-DP-capable slave static				

4

M800/M80 SERIES SPECIFICATIONS LIST

General explanation

_C contained inside the NC system to be developed and debugged using the GX

pe, and the bit selection parameters set with the bit types can be specified on the screen PLC

chining setups as it allows machining programs to be registered for each pallet of the auto

input, the corresponding axis is set in the servo OFF state. When the moving axis is designed to prevent the servo motor from being overloaded by the clamping force. be released from control.

ethod whereby both master and slave axes are controlled with the same travel command the master axis also to the slave axis. This function is assumed to be used in such ch drive one axis with two servo motors.

ne are mounted at an angle other than 90 degrees, this function enables it to be e way as with an orthogonal axis.

s axis, a hypothetical dog switch is established using a parameter to set a coordinate e hypothetical dog position. When the machine reaches the position, a signal is output to

performed by setting the index axes.

tion along the tool axis and compensation amount Even if the tool axis direction is not the is rotated, the tool can be compensated in the tool axis direction. th compensation along the tool axis is carried out in respect to the direction of the tool

e the axis with the manual pulse generator in the tool axis direction, tool diameter direction

ypothetical coordinate system over the tool axis. errupt amount (tool axis movement) and tool center point speed are displayed during the ength compensation along the tool axis function, and tool handle feed & interrupt function ndle interrupt, tool diameter direction handle feed, nose center rotation handle feed). on command in a machining program is at the tool center point in the coordinate system s together with the workpiece.

his function can be machined using normal program commands.

radius of the 5-axis machine with two rotary axes, in accordance with the change of the ne tool due to the movement of the rotary axis.

ne. This compensates the error when a workpiece is placed off the workpiece coordinate to the program.

system to be machined, axis can be moved with manual feed (JOG, HANDLE or em with this function. It can be easy to setup because multiple axes is moved by NC ation of the table.

nining (multiple / inclined surface machining) using a rotary axis.

orkpiece weight) of mechanical system and changes the speed control gain automatically uppress mechanical vibration. Users can expect suppression of vibration caused by inertia hining time through adaptation of appropriate speed control gain. for [Constant torque control] outputs the torque set by the parameter in a constant

for [Proportional torque stopper control] generates the torque set by the parameter in the

s and feed rates of the control axes to be controlled using commands from the user PLC. on the machine coordinate from the user PLC, oblique linear interpolation or circular dle feed, manual rapid traverse or incremental feed of either X axis or Y axis. to be controlled with PLC-based commands, separately from the NC control axes.

n advance, positioning control can be performed simply by designating a positioning point

are assigned from the PLC. Input signals with skip inputs that respond at high speed can

CNC system. They can be utilized by referencing them from the PLC. "write window" assigned to the R register's user area to read and write the CNC meters and tool data, etc.

program to automatically start from the PLC. The program No., block No. and sequence details of the search in progress can be read.

on to the alarm display screen when an alarm occurs.

utput from the operation panel I/O unit according to the type and No. of contacts.

utput from the remote I/O unit according to the type and No. of contacts. Remote I/O units ntrol unit or the operation panel I/O unit. as long as the total number of occupied stations is 64 or less.

ne network to serve as the master / slave station of the MELSEC CC-Link. slave stations as a master station of PROFIBUS-DP communication by connecting to

		Lathe system							Machining center system		
	class	M800W	/ Series	M800S	Series	M80 S	Series	M800W	Series		
		M850W	M830W	M850S	M830S	M80 TypeA	M80 TypeB	M850W	M830W		
7 Ir	stalling S/W for machine tools										
	Customization (NC Designer2) (Note 1)	0	0	0	0	0	0	0	0		
	1 Customization data storage capacity [MB]	*	*	*	*	*	*	*	*		
	2 Customization Working Memory Size [MB]	6	6	6	6	3	3	6	6		
	2 User-defined key	0	0	0	0	0	0	0	0		
	EZSocket I/F (Note 1)	0	0	0	0	0	0	0	0		
	APLC release (Note 1)			Δ	Δ	0	0	Δ	Δ		
	Custom API library (Note 1)	0	0	0	0	0	0	0	0		
	MES interface library	Δ	Δ	Δ	Δ	0	0	Δ	Δ		
80	thers										
	System lock	Δ		Δ	Δ	0	0	\triangle	Δ		
	2 CNC remote operation tool										
	1 NC Monitor2 (Note 1)	0	0	0	0	0	0	0	0		
	2 NC Explorer (Note 3)	0	0	0	0	0	0	0	0		
	Automatic operation lock	0	0	0	0	0	0	0	0		
	Power consumption computation	0	0	0	0	0	0	0	0		
	EcoMonitorLight connection										

	Machining center system						
	Series	M80 \$	Series	M800S			
	M80 TypeB	M80 TypeA	M830S	M850S			
	0	0	0	0			
It is an optional function that allows a user-cre the screep	*	*	*	*			
tile scieeri.	3	3	6	6			
This function allows an arbitrary character str	0	0	0	0			
This middleware makes it easy to develop ap	0	0	0	0			
APLC (Advanced Programmable Logic Contr called from the NC. Control operations that a	0	0	Δ	Δ			
Reading / writing of each information within N	0	0	0	0			
The MES interface library function links the N system) without a communication gateway.	0	0	Δ	Δ			
	1						
This function locks the operations of the NC	0	0		Δ			
NC Monitor2 is a PC software tool that monit	0	0	0	0			
NC Explorer is a software tool to operate the Ethernet connection from the Explorer on the	0	0	0	0			
Automatic operation lock function prevents th	0	0	0	0			
Present power consumption and accumulate consumption notifies the instantaneous power value of the present power consumption.	0	0	0	0			
NC system can collect and manage the elect "EcoMonitorLight".							

(Note 1) Please contact us to purchase this tool. (Note 3) This tool is free of charge. Please contact us.

4

M800/M80 SERIES SPECIFICATIONS LIST

S/W ver.A4
General explanation
ser-created screen or window to be displayed as an HMI screen or another application on
ter string to be assigned to a key and makes it easy to input a typical character string.
lop applications having the Windows interface.
Controller) release is a function that allows the user-generated C language module to be that are difficult to express in a sequence program can be created with the C language.
rithin NC unit is possible by using custom API library.
the NC internal data and the database of information system (manufacturing execution way.
e NC if the release code is not entered before the specified time limit.
monitors information in the NC unit connected with the Ethernet.
te the machining data files of each NC unit connected with a host personal computer by on the host personal computer.
ents the falsification of APLC (C language module) by a third party.
mulated power consumption can be acquired with this function. The present power s power consumption and the accumulated power consumption notifies the integrated on.
e electric power of the machine tool which is measured by the energy measuring unit

CNC SYSTEM HARDWARE

Display	Keyboard	M800W Series	M800S Series	[mm] M80 Series
FCU8-DU191-75 (M800W) 19-type Touchscreen	-	365		
FCU8-DU181-34 (M800W) FCU8-DU181-31 (M800S) FCU8-DU181-32 (M80) 15-type Touchscreen	FCU8-KB083 Clear key	400 320 140	400 320 140	400 320 140
FCU8-DU141-31 (M800S) FCU8-DU141-32 (M80) 10.4-type Touchscreen	FCU8-KB047 Clear key	_	290 220 160	290
FCU8-DU141-31 (M800S) FCU8-DU141-32 (M80) 10.4-type Touchscreen	FCU8-KB046 Clear key	_	290 140	290 140
FCU8-DU121-12 (M80) 8.4-type	FCU8-KB026 Clear key	_	_	260 140

CNC SYSTEM I/O UNIT AND OTHERS

■List of Units

Classificati	on	Туре	Remarks	Supp M800W	nodel M80	
[Operation Panel I/O Unit]						
DI 24V/0V common input	DO Source output	FCU8-DX830	DI : 64-points 24V/0V common type DO : 64-points source type MPG : 3ch Remote I/O 2.0 I/F RIO occupied stations (fixed) : 1, 2, 7 ~ 14 RIO extensible stations : 3 ~ 6, 15 ~ 64	0	-	-
		FCU8-DX750	DI : 96-points 24V/0V common type DO : 64-points source type MPG : 3ch Remote I/O 2.0 I/F RIO occupied stations (fixed) : 1 ~ 3,7 ~ 12 RIO extensible stations : 4 ~ 6,13 ~ 64	-	0	0
DI 24V/0V common input Safety DI 24V/0V ommon input	DO Source output	FCU8-DX837	DI : 64-points 24V/0V common type DO : 64-points source type Safety DI : 8-points 0V common type MPG : 3ch Remote I/O 2.0 I/F RIO occupied stations (fixed) : 1 ~ 4, 7 ~ 14 RIO extensible stations : 5, 6, 15 ~ 64	0	-	-
[Remote I/O Unit]						
		FCU8-DX220	DI : 32-points 24V/0V common type DO : 32-points source type Number of occupied stations : 1	0	0	0
Di 249/09 common input	DO Source output	FCU8-DX230	DI : 64-points 24V/0V common type DO : 48-points source type Number of occupied stations : 2	0	0	0
DI 24V/0V common input	DO Source output AO Analog output	FCU8-DX231	DI : 64-points 24V/0V common type DO : 48-points source type AO : 1 point Number of occupied stations : 2		0	0
DI 0V common input DO Source output (large capacity)		FCU8-DX213	DI : 16-points 0V common type DO : 8-points source type Number of occupied stations : 1		0	0
Safety DI 0V common input	Safety DO Source output (large capacity)	FCU8-DX654	Safety DI : 8-points 0V common type Safety DO : 4-points source type Number of occupied stations : 2	0	0	0
DI 24V/0V common input Safety DI 0V common input	DO Source output Safety relay output	FCU8-DX651	DI : 32-points 24V/0V common type DO : 32-points source type Safety DI : 8-points 0V common type Safety relay : 4-points (non-voltage contact) Relay contact welding detection Number of occupied stations : 3	0	0	0
[Expansion Unit/Card]						
CC-Link expansion unit		FCU8-EX561	CC-Link × 1ch	0	0	0
Option Relay Unit		FCU8-EX702	Option for 1ch	-	0	0
[Side Memory I/F Unit]						
Side Memory I/F Unit		FCU8-EP201-2	SDHC I/F : 1ch USB2.0 I/F : 1ch USB communication (between WN251 and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit	0	Ι	-
[Manual Pulse Generator]						
5V Manual Pulse Generator		UFO-01-2Z9	Input DC5V 100 pulse/rev	0	0	0
12V Manual Pulse Generato	r	HD60C	Input DC12V 25 pulse/rev	0	0	0
[Encoder]						
		OSE1024-3-15-68	Input DC5V 1024 pulse/rev 6000 r/min, 68-square flange	-	0	0
Synchronous feed encoder		OSE1024-3-15-68-8	Input DC5V 1024 pulse/rev 8000 r/min, 68-square flange	-	0	0
		OSE1024-3-15-160	Input DC5V 1024 pulse/rev 6000 r/min, 160-square flange	-	0	0

DI: Digital input signals, DO: Digital output signals, AO: Analog output signals

35

4 CNC SYSTEM

CNC SYSTEM GENERAL CONNECTION DIAGRAM

■M800W Series (19-type)

Dotted lines indicate the sections prepared by the machine tool builder.

(Note 1) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" to be described. (Note 2) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" to be described. (Note 1) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" to be described. (Note 2) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" to be described

GENERAL CONNECTION DIAGRAM

4 **CNC SYSTEM**

GENERAL CONNECTION DIAGRAM

■M800S Series

(R2-TM)

M80 Series

(Note 1) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" to be described. (Note 2) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" to be described. (Note 1) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" to be described. (Note 2) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" to be described. (Note 3) The 8.4-type display unit is incompatible with the touchscreen

4 CNC SYSTEM

GENERAL CONNECTION DIAGRAM

4

CNC SYSTEM

CNC SYSTEM CABLES LIST

	Application	Туре	Length	Contents	Supp	orted n	nodel
		J291 L0.15M	0.15	1/5/1/02	WOULAN	1410003	MOU
(1)	Connection cable between personal computer unit	J291 L0.5M	0.5		0	_	_
(-)	and operation panel I/O unit	J291 I 1 0M	1				
		G170 1M	1				
		G170 L2M	2	ON/OFF			
(2)	ON/OFF switch cable	G170 L3M	3			_	
(2)	(ON/OFF switch - Personal computer unit)	G170 L5M	5				
		G170 L10M	10				
		G170 L15M	15				
		J220 L2M	2	تحا			
		J220 L3M	3	AIO			
(3)	Analog output cable	J220 L5M	5		0	_	_
(-)		J220 L7M	7		-		
		J220 L 10M	10				
		J220 L 20M	20				
		J010 L0.5M	0.5	C 171 C 171			
(4)	Operation panel I/O interface cable	(for 8.4/10.4-type display)	0.5		-	0	0
		J010 L1M	1				
		J020 L1M					
		J020 L2IVI	2				
		J020 L5M	5	MPG			
(5)	Manual pulse generator cable (12V) : 1ch	J020 L7M	7		0	0	0
		J020 L10M	10				
		J020 L15M	15				
		J020 L20M	20				
		J020 L30M	30				
		J021 L1M	2				
		J021 L3M	3				
		J021 L5M	5				
(6)	Manual pulse generator cable (12V) : 2ch	J021 L7M	7		0	0	0
		J021 L10M	10				
		J021 L15M	15				
		J021 L20M	30				
		J022 L1M	1				
		J022 L2M	2				
		J022 L3M	3	MPG PO			
(7)	Manual autor processing schola (40) A. Osh	J022 L5M	5				
(7)	Manual pulse generator cable (12v) : 3ch	J022 L7N	10		0	0	0
		J022 L15M	15				
		J022 L20M	20				
		J022 L30M	30				
		J023 L1M	1				
		J023 L2M	2				
		J023 L3IVI	3	MPG			
(8)	Manual pulse generator cable (5V) : 1ch	J023 L7M	7		0	0	0
		J023 L10M	10				
		J023 L15M	15				
		J023 L20M	20				
		J024 L1M					
		J024 L2IVI	2				
		J024 L5M	5				
(9)	Manual pulse generator cable (5V) : 2ch	J024 L7M	7		0	0	0
		J024 L10M	10	Le			
		J024 L15M	15				
		J024 L20M	20				
		J025 L1M	1				
		J025 L3M	3	MPG F			
(4.6)		J025 L5M	5				
(10)	ivianual pulse generator cable (5V) : 3ch	J025 L7M	7		0	0	0
		J025 L10M	10				
		J025 L15M	15				
		J025 L20M	20		1		

	Application	Туре	Leng
		J026 L1M	
		J026 L2M	
		J026 L3M	
(11)	Manual pulse generator cable (5V) : 1ch	J026 L5M	
(11)	(for connection to control unit)	J026 L7M	
		J026 L10M	
		J026 L15M	
		J026 L20M	
		J027 L1M	
		J027 L2M	
		J027 L3M	
(4.0)	Manual pulse generator cable (5V) : 2ch	J027 L5M	
(12)	(for connection to control unit)	J027 L7M	
		J027 L10M	
		J027 L15M	
		J027 L20M	
		J030 L1M	
		J030 L2M	
	BS-232C I/E cable: 1ch	J030 L3M	
(13)	(for control unit)	J030 L5M	
		J030 L7M	
		J030 L 10M	
		1001 414	
		JU31 L1M	
		J031 L2M	
(1.4)	RS-232C I/F cable: 2ch	J031 L3M	
(14)	(for control unit)	J031 L5M	
		J031 L7M	
		J031 L10M	
		1070 L 1M	-
		1070 L 2M	-
		1070 L 2M	
		1070 L 5M	-
(15)	24VDC power cable	1070 L 7M	-
(10)		1070 L 10M	
		1070 L 15M	-
		1071 L 20M	-
		(for long distance)	
		J100 1M	
		J100 L 2M	-
		J100 L3M	
		J100 5M	
(16)	SKIP input cable	.1100 L 7M	-
		J100 L 10M	-
		J100 L 15M	
		J100 L 20M	
		J120 1M	
		1120 L 2M	1
		J120 L 3M	-
		J120 L 5M	+
(17)	Emergency stop cable	J120 L 7M	1
(17)		J120 L 10M	-
		.1120 L 15M	-
		1120 L 20M	-
		1120 L20M	
		1010 L0 2M	<u> </u>
		J210 L0.3W	
			-
		JZ IU L3M	-
(18)	Remote I/O 2.0 communication cable		-
		1210 L/W	-
		1010115M	-
			-
		1210 L2010	-
		.1303 L 1M	-
		1303 L 2M	
		1303 L 3M	-
		J303 L 5M	-
(10)	LAN straight cable	.1303 L 7M	-
(13)		J303 L 10M	-
		J303 15M	-
		J303 L 20M	1

41

4

CABLES LIST

4 CNC SYSTEM

	Application	Туре	Length	Contents	Supp	orted r	nodel
		1050 1 114	(m)	0.101.0.100 0.101.0.100	M800W	M800S	M80
	DI/DO cable (connectors at both ends)		0	CJ33,CJ34 CJ33,CJ34			
(20)		J350 L2IVI	2		0	0	0
		J350 L3M	Length (m) Contents 1 CJ31,CJ32, CJ34, CJ33,CJ34 2 CJ31,CJ32,CJ34, CJ33,CJ34 3 0 1 CJ31,CJ32,CJ33,CJ34 3 0 1 CJ37,CJ39 2 0 3 0 2 0 3 0 3 0 3 0 3 0 3 0 3 0 5 0 5 0 6 0 1 CJ37,CJ39 3 0 5 0 5 0 6 0 7 0 10 0 15 0 20 0 15 0 16 0 17 0 18 0 19 0 10 0 <td></td> <td></td> <td></td>				
		J350 L5M	5				
(21)	DI/DO cable (connector at one end)	J351	3	CJ31,CJ32,CJ33,CJ34	0	0	0
		J460 L1M	1	CJ37,CJ39 CJ37,CJ39			
(22)	DI/DO cable (connectors at both ends)	J460 L2M	2	fil _fil			
(22)	(for operation panel I/O unit)	J460 L3M	3				
		J460 L5M	5				
(23)	DI/DO cable (connector at one end) (for operation panel I/O unit)	J461	3	CJ37.CJ39	0	0	0
(24)	Synchronous encoder - control unit (straight, with connector)	FCUA-R050-5M	5		_	0	0
		FCUA-R054-3M	3				
		FCUA-R054-5M	5	ENC			
(25)	Synchronous encoder - control unit	FCUA-R054-10M	10		-	0	0
		FCUA-R054-15M	15		0 0 - 0 - 0 0 0		
		FCUA-R054-20M	20			0 0 0 0 0	
(26)	Cable for emergency stop release	G123	_		0	0	0
(27)	Terminator for remote I/O interface	R2-TM	_	One terminator is required to be installed at the final end of remote IO unit.	0	0	0

■Cable connector sets for CNC

	.	-	Contents			Supported mod		
	Application	Туре	Cor	itents	M800W	M800S	M80	
(1)	General I/O units (for ENC,SKIP,SIO,MPG)	FCUA-CS000	Connector (3M) 10120-3000PE x 2pcs.	Shell kit (3M) 10320-52F0-008 x 2pcs.	0	0	0	
(2)	Emergency stop connector (for EMG)	50-57-9403 16-02-0103* 3pcs.	Connector (MOLEX) 50-57-9403 x 1pc.	Gold contact (MOLEX) 16-02-0103 x 3pcs.	0	0	0	
(3)	Connector kit for RIO2.0 unit	1-1318119-3* 2pcs. 1318107-1* 8pcs.	Connector(Tyco Electronics) 1-1318119-3 x 2pcs.	Contact (Tyco Electronics) 1318107-1 x 8pcs.	0	0	0	
(4)	24VDC power supply connector (for DCIN)	FCUA-CN220	Connector (Tyco Electronics) 2-178288-3 x 1pc.	Tin contact (Tyco Electronics) 1-175218-5 x 3pcs.	0	0	0	
(5)	Remote I/O unit - terminal block	7940-6500SC* 4pcs. 3448-7940* 4pcs.	Connector (3M) 7940-6500SC x 4pcs.	Strain relief (3M) 3448-7940 x 4pcs.	0	0	0	
(6)	DI/DO connector	7950-6500SC* 2pcs. 3448-7950* 2pcs.	Connector (3M) 7950-6500SC x 2pcs.	Strain relief (3M) 3448-7950 x 2pcs.	0	0	0	
(7)	ON/OFF switch connector	50-57-9404 16-02-0103* 4pcs.	Connector (MOLEX) 50-57-9404 x 1pc.	Contact (MOLEX) 16-02-0103 x 4pcs.	0	_	_	
(8)	Operation panel I/O connector	2-1318119-4 1318107-1* 8pcs.	Connector (Tyco Electronics) 2-1318119-4 x 1pc.	Contact (Tyco Electronics) 1318107-1 x 8pcs.	_	0	0	

4 CNC SYSTEM

43

CABLES LIST

DRIVE SYSTEM

Drive unit

High-performance Servo/ Spindle Drive Units MDS-E/EH Series

- The servo control-dedicated core processor realizes an increase in control speed, leading to improved basic performance. When combined with a higher resolution motor sensor and enhanced high-speed optical communication, this drive contributes to high-speed, high-accuracy control. · Motor power connector comprises an anti-misinsertion mechanism. This helps to eliminate connection errors.
- · Improved diagnostic and preventivemaintenance features.
- Safe Torque Off (STO) and Safe Brake Control (SBC) are supported in effort to enhance safety features.

Multi-hybrid **Drive Units MDS-EM Series**

· The multi-hybrid drive unit is capable of driving a maximum of three servo axes and one spindle. This contributes to the downsizing of machines and offers technical advantages.

· Motor power connector comprises an anti-misinsertion mechanism. This helps to eliminate connection errors. · Safe Torque Off (STO) and Safe Brake Control (SBC) are supported in effort to enhance safety features.

All-in-one compact drive units **MDS-EJ/EJH Series**

· Ultra-compact drive units with built-in power supplies contribute to reduced control panel size. · The servo control-dedicated core processor realizes an increase in control speed, leading to improved basic performance. When combined with a higher resolution motor sensor and enhanced high-speed optical communication, this drive contributes to high-speed, high-accuracy control. Safe Torque Off (STO) and Safe Brake Control (SBC) are supported in effort to enhance safety features. MDS-EJH 400V system drive unit is available (Note 1).

Medium-inertia, high-accuracy and high-speed motors **HG Series**

- · Sensor resolution has been significantly improved. The servo motors, which boast smooth rotation and outstanding acceleration capabilities, are wellsuited to serve as feed axes of machine tools.
- · Range 0.5 to 9 [kW]
- Maximum speed: 4,000 or 5,000 [r/min]
- · Safety support sensors are included as standard specification. Sensor connectors are screw-locked and have enhanced vibration resistance. Three sensor resolutions (i.e., 1, 4 and 67 million pulses/rev) are available.

Linear Servo Motor LM-F Series

- · Use in clean environments is possible since no ball screws are used, eliminating possible contamination from grease.
- · Elimination of transmission mechanisms, including backlash, enables smooth and quiet operation
- even at high speeds. · Dimensions:
- Length: 290 to 1,010 [mm] Width: 120 to 240 [mm]

Direct Drive Servo Motor TM-RB Series

· High-torque, direct-drive motor combined with high-gain control provides quick acceleration and positioning, which makes rotation smoother.

- Suitable for rotary axes that drive tables or spindle heads.
- Range:
 - Maximum torque: 36 to 1,280 [N·m]

Spindle motor

High-performance Spindle Motor **SJ-D Series**

- · Motor energy loss has been significantly reduced by optimizing the magnetic circuit.
- · High-speed bearing incorporated as a standard feature helps to achieve higher speed, lower vibration and improved durability. · Range:
- Normal SJ-D Series 3.7 to 11 [kW] Compact & light SJ-DJ Series 5.5 to 15 [kW]
- · Maximum speed 10,000 or 12,000 [r/min]

Built-in Spindle Motor **SJ-BG Series**

· The electrical design has been optimized to increase the continuous rated torque per unit volume, contributing to the downsizing of spindle units. · A mold with cooling jacket is available as an optional feature.

SJ-DG Series

characteristics.

fine tuning.

[r/min]

DRIVE SYSTEM

High-output, High-torque **Spindle Motor**

· Addition of S3 rating (%ED rating) has improved output and torque acceleration/deceleration

Balance adjustment ring has been added to the counter-load side for

Range S3 rating: 5.5 to 15 [kW] · Maximum speed 10,000 or 12,000

Low-inertia, High-speed Spindle Motor **SJ-DL Series**

- · The spindle motors are dedicated to tapping machines requiring faster drilling and tapping.
- The latest design technologies have made it possible to attain lower vibration and greater rigidity even with the lighter weight.
- Range 0.75 to 7.5 [kW]

DRIVE SYSTEM SYSTEM CONFIGURATION

■MDS-E/EH Series

■MDS-EM Series

SYSTEM CONFIGURATION

■MDS-EJ/EJH Series

MDS-EJ Series: 3-phase 200VAC power supply MDS-EJH Series: 3-phase 400VAC power supply(MDS-EJH-V1 only)

L1-

L2

(Note) Prepared by user.

SYSTEM CONFIGURATION

DRIVE SYSTEM SPECIFICATIONS

<Servo specification>

	Item	MDS-E-V1/V2	MDS-EH-V1/V2	MDS-EM-SPV3	MDS-EJ/EJH-V1
	Software Version	A2	A2	A2	A2
	1.1 Full closed loop control	•	•	•	•
1 Base control	1.2 Position command synchronous control	•	•	•	•
functions	1.3 Speed command synchronous control	•	•	-	-
	1.4 Distance-coded reference position control	•	•	•	•
	2.1 Torque limit function (stopper function)	•	•	•	•
	2.2 Variable speed loop gain control	•	•	•	•
	2.3 Gain changeover for synchronous tapping control	•	•	•	•
	2.4 Speed loop PID changeover control	•	•	•	•
2 Sania control	2.5 Disturbance torque observer	•	•	•	•
2 Servo control	2.6 Smooth High Gain control (SHG control)	•	•	•	•
Tunction	2.7 High-speed synchronous tapping control (OMR-DD control)	•	•	•	•
	2.8 Dual feedback control	•	•	•	•
	2.9 HAS control	•	•	•	•
	2.10 OMR-FF control	•	•	•	•
	3.1 Jitter compensation	•	•	•	•
	3.2 Notch filter	Variable frequency: 4 Fixed frequency: 1			
	3.3 Adaptive tracking-type notch filter	•	•	•	•
3 Compensation	3.4 Overshooting compensation	•	•	•	•
control function	3.5 Machine end compensation control	•	•	•	•
	3.6 Lost motion compensation type 2	•	•	•	•
	3.7 Lost motion compensation type 3	•	•	•	•
	3.8 Lost motion compensation type 4	•	•	•	•
	4.1 Deceleration control at emergency stop	•	•	•	•
	4.2 Vertical axis drop prevention/pull-up control	•	•	•	•
	4.3 Earth fault detection	•	•	•	•
4 Protection	4.4 Collision detection function	•	•	•	•
function	4.5 SLS (Safely Limited Speed) function (Note 1)	•	•	•	•
	4.6 Fan stop detection	•	•	•	•
	4.9 STO (Safe Torque Off) function	•	•	•	•
	4.10 SBC (Safe Brake Control) function	•	•	•	•
E Soguenee	5.2 Motor brake control function	•	•	•	•
function	5.4 Specified speed output	•	•	•	-
function	5.5 Quick READY ON sequence	•	•	•	-
	6.1 Monitor output function	•		•	•
6 Diagnosis function	6.2 Machine resonance frequency display function	•	•	•	•
	6.3 Machine inertia display function	•	•	•	•

(Note 1) 4.5 SLS (Safely Limited Speed) function is set on NC side.

<Spindle specification>

Item	MDS-E-SP	MDS-EH-SP	MDS-E-SP2	MDS-EM-SPV3
Software Version	A2	A2	A2	A2
1.1 Full closed loop control	•	•	•	•
1.5 Spindle's continuous position loop control	•	•	•	•
1.6 Coil changeover control	•	•	-	•
1.7 Gear changeover control	•	•	•	•
1.8 Orientation control	•	•	•	•
1.9 Indexing control	•	•	•	•
1.10 Synchronous tapping control	•	•	•	•
1.11 Spindle synchronous control	•	•	•	•
1.12 Spindle/C axis control	•	•	•	•
1.13 Proximity switch orientation control	•	•	 (Note 1) 	•
2.1 Torque limit function	•	•	•	•
2.2 Variable speed loop gain control	•	•	•	•
2.5 Disturbance torque observer	•	•	•	•
2.6 Smooth High Gain control (SHG control)	•	•	•	•
2.7 High-speed synchronous tapping control (OMR-DD control)	•	•	•	•
2.8 Dual feedback control	•	•	•	•
2.11 Control loop gain changeover	•	•	•	•
2.12 Spindle output stabilizing control	•	•	•	•
2.13 High-response spindle acceleration/				
deceleration function	•	•	¥	`
3.1 Jitter compensation	•	•	•	•
3.2 Notch filter	Variable frequency: 4 Fixed frequency: 1	Variable frequency: 4 Fixed frequency: 1	Variable frequency: 4 Fixed frequency: 1	Variable frequency: 4 Fixed frequency: 1
3.3 Adaptive tracking-type notch filter	•	•	•	•
3.4 Overshooting compensation	•	•	•	•
3.6 Lost motion compensation type 2	•	•	•	•
3.9 Spindle motor temperature compensation function	•	•	•	•
4.1 Deceleration control at emergency stop	•	•	•	•
4.3 Earth fault detection	•	•	•	•
4.5 SLS (Safely Limited Speed) function	•	•	•	•
4.6 Fan stop detection	•	•	•	•
4.9 STO (Safe Torque Off) function	•	•	•	•
5.4 Specified speed output	•	•	•	•
5.5 Quick READY ON sequence	•	•	•	•
6.1 Monitor output function	•	•	•	•
6.2 Machine resonance frequency display function	•	•	•	•
6.3 Machine inertia display function	•	•	•	•
6.4 Motor temperature display function	•	•	•	•
6.5 Load monitor output function	•	•	•	•
6.6 Open loop control function	•	•	•	•
	Item Software Version 1.1 Full closed loop control 1.5 Spindle's continuous position loop control 1.6 Coil changeover control 1.7 Gear changeover control 1.8 Orientation control 1.9 Indexing control 1.10 Synchronous tapping control 1.11 Spindle synchronous control 1.12 Spindle/C axis control 1.13 Proximity switch orientation control 2.1 Torque limit function 2.2 Variable speed loop gain control 2.5 Disturbance torque observer 2.6 Smooth High Gain control (SHG control) 2.7 High-speed synchronous tapping control (OMR-DD control) 2.8 Dual feedback control 2.11 Control loop gain changeover 2.12 Spindle output stabilizing control 2.13 Litter compensation 3.1 Jitter compensation 3.2 Notch filter 3.3 Adaptive tracking-type notch filter 3.4 Overshooting compensation type 2 3.9 Spindle motor temperature compensation function 3.1 Litter control at emergency stop 4.3 Earth fault detection 4.4 Overshooting compensation type 2 3.9 Spindle motor temperature compensation function	Item MDS-E-SP Software Version A2 1.1 Full closed loop control ● 1.5 Spindle's continuous position loop control ● 1.6 Coil changeover control ● 1.8 Orientation control ● 1.9 Indexing control ● 1.10 Synchronous tapping control ● 1.11 Spindle synchronous control ● 1.12 Spindle/C axis control ● 1.13 Proximity switch orientation control ● 2.1 Torque limit function ● 2.5 Disturbance torque observer ● 2.6 Smooth High Gain control (SHG control) ● 2.7 High-speed synchronous tapping control (OMR-DD control) ● 2.11 Control loop gain changeover ● 2.12 Spindle output stabilizing control ● 2.13 High-response spindle acceleration/ deceleration function ● 3.1 Jitter compensation ● 3.2 Notch filter Variable frequency: 4 5.4 Overshooting compensation function ● 3.4 Overshooting compensation function ● 3.5 Lost motion compensation function ●	ItemMDS-E-SPMDS-EH-SPSoftware VersionA2A211. Full closed loop control••15. Spindle's continuous position loop control••16. Coil changeover control••17. Gear changeover control••18. Orientation control••19. Indexing control••10.10 Synchronous tapping control••11.11 Spindle synchronous control••11.31 Proximity switch orientation control••11.31 Proximity switch orientation control••2.1 Torque limit function••2.2 Variable speed loop gain control••2.5 Disturbance torque observer••2.6 Smooth High Gain control (SHG control)••2.7 High-speed synchronous tapping control••2.12 Spindle output stabilizing control••2.12 Spindle output stabilizing control••2.13 High-response spindle acceleration/ deceleration function••3.1 Jitter compensation•••3.4 Overshooting compensation type 2••3.4 Qivershooting compensation type 2••3.5 (Safely Limited Speed) function••4.5 SLS (Safely Limited Speed) function••4.5 SLS (Safely Limited Speed) function••4.5 Gaie Note Not sequence••3.6 Lost motion compensation type 2••3.7 (Saf	Item MDS-E-SP MDS-E-SP MDS-E-SP Software Version A2 A2 A2 1.1 Full closed loop control • • • 1.6 Coil changeover control • • • 1.6 Coil changeover control • • • 1.8 Orientation control • • • 1.9 Indexing control • • • 1.10 Synchronous tapping control • • • 1.11 Spindle synchronous control • • • 1.13 Prokine synchronous tapping control • • • 1.13 Prokine synchronous tapping control • • • 2.1 Torque limit function • • • • 2.1 Sturbus bespeed loop gain control • • • • • 2.5 Disturbance torgue observer • • • • • • 2.13 High-speed synchronous tapping control • • • • • • •

<Power Supply>

	Item	MDS-E-CV	MDS-EH-CV	MDS-EM built-in converter	MDS-EJ/EJH-V1 built-in converter
S	oftware Version	A1	A1	A1	A1
1 Doos control functions	1.14 Power regeneration control	•	•	•	-
T Base control functions	1.15 Resistor regeneration control	-	-	-	•
4 Protection function	4.6 Fan stop detection	•	•	•	•
	4.7 Open-phase detection	•	•	•	-
	4.8 Contactor weld detection	•	•	•	•
	4.11 Deceleration and stop function at power failure (Note 1)	•	•	•	-
	4.12 Retraction function at power failure (Note 2)	•	•	-	-
5 Sequence function	5.1 Contactor control function	•	•	•	•
	5.3 External emergency stop function	•	•	•	•
	5.5 High-speed ready ON sequence	•	•	•	-
6 Diagnosis function	6.7 Power supply voltage display function	•	•	•	-
	6.8 Drive Unit Diagnosis Display Function	•			

(Note 1) The power backup unit and resistor unit option are required. (Note 2) The power backup unit and capacitor unit option are required.

■MITSUBISHI CNC DRIVE SYSTEM LINES

Compatible motors' rated capacity

51

5

SPECIFICATIONS

DRIVE SYSTEM TYPE

■200V HG servo motor

Se	eries>		
3 (1 2	3 – 4	
Rated	output and m	naximum rotation	speed
Symbol	Rated output	Max. rotation speed	Flange size(mm)
5 05		under developm	ent
54	0.5 kW	4000 r/min	130 SQ.
04	1.0 kW	4000 r/min	130 SQ.
154	1.5 kW	4000 r/min	130 SQ.
224	2.2 kW	4000 r/min	130 SQ.
204	2.0 kW	4000 r/min	176 SQ.
354	3.5 kW	4000 r/min	176 SQ.
123	1.2 kW	3000 r/min	130 SQ.
223	2.2 kW	3000 r/min	130 SQ.
303	3.0 kW	3000 r/min	176 SQ.
453	4.5 kW	3500 r/min	176 SQ.
703	7.0 kW	3000 r/min	176 SQ.
903	9.0 kW	3000 r/min	204 SQ.
142	1.4 kW	2000 r/min	130 SQ.

ture ge

■200V SJ-D spindle motor

<sj-d (for="" 200v)="" series=""> SJ-D ① ② / ③ - ④</sj-d>					
1 Motor	r Series	2 Short-tin	ne (or %ED) rated output	3 Maximum rotation sp	
Symbol	Motor Series	Symbol	Short-time rated output	Indicates the hundred	
None	Normal specifications	0.75	0.75 kW	place and higher order	
G	High-output specifications	1.5	1.5 kW	Generation cod	
J	Compact & lightweight specifications	3.7	3.7 kW	Indicates a specificati	
L	Low-inertia specifications	5.5	5.5 kW	code (01 to 99).	
		7.5	7.5 kW		
		11	11 kW		
		15	15 kW		

■200V SJ-V spindle motor

1)Motor Se	eries	④Short-time	rated output (Standard specification)
Symbol	Motor Series	Symbol	Short-time rated output
V	Medium inertia Series	0.75	0.75 kW
VL	Low inertia Series	1.5	1.5 kW
2 Coil cha	ngeover	2.2	2.2 kW
Symbol	Coil changeover	3.7	3.7 kW
None	Unavailable	5.5	5.5 kW
К	Available	7.5	7.5 kW
		11	11 kW
3Shaft co	nfiguration	15	15 kW
Symbol	Shaft configuration	18.5	18.5 kW
None	Standard	22	22 kW
S	Hollow shaft	26	26 kW
		37	37 kW
		45	45 kW
		55	55 kW

(Note) This explains the model name system of a spindle motor, and all combinations of motor types listed above do not exist.

302

■200V Direct-drive motor

3.0 kW

2000 r/min

176 SQ.

<tm-rb series=""></tm-rb>	①Rated torque		2 Stator	dimensions	3 Rated rotation speed	
	Symbol	Rated torque	Symbol	Dimension	Symbol	Speed
Primary side [coil side]	012	12 N · m	С	DIA 130 mm	10	100 r/min
TM-RBP 1 2 3	036	36 N · m	E	DIA 180 mm	20	200 r/min
	048	48 N · m	G	DIA 230 mm		
Secondary side [magnet side]	105	105 N · m	J	DIA 330 mm		
	150	150 N · m				
TM-RBS (1) (2) (3)	340	340 N · m				
	500	500 N · m]			

■200V Linear servo motor

DRIVE SYSTEM

5

the symbols are in alphabetical order.

5Specification code

The SJ-V/VLSeries is indicated with a specification code (01 to 99).

6 Special specifications Symbol Special specifications None Standard Ζ High-speed bearing

High-speed bearing front-lock FZ

DRIVE SYSTEM

■200V Built-in spindle motor

(Note) This explains the model name system of a spindle motor, and all combinations of motor types listed above do not exist.

■400V HG-H servo motor

<	<hg-h series=""></hg-h>					
	HG-H 1 2 3 – 4					
	①Rated output · Maximum rotation speed					
	Symbol	Rated output	Max. rotation speed	Flange size(mm)		
	75		under devel	opmont		
	105		opinient			
	54	0.5 kW	4000 r/min	130 SQ.		
	104	1.0 kW	4000 r/min	130 SQ.		
	154	1.5 kW	4000 r/min	130 SQ.		
	204	2.0 kW	4000 r/min	176 SQ.		
	354	3.5 kW	4000 r/min	176 SQ.		
	453	4.5 kW	3500 r/min	176 SQ.		
	703	7.0 kW	3000 r/min	176 SQ.		
	903	9.0 kW	3000 r/min	204 SQ.		

<HQ-H Series>

HQ-H 1 2 3 · 4						
1 Rated output · Maximum rotation speed						
Symbol	Rated output	Max. rotation speed	Flange size(mm)			
903	9.0kW	3000 r/min	220 SQ.			
1103	1103 11.0kW 3000 r/min		220 SQ.			

■400V SJ-4-V spindle motor

(Note 1) The built-in spindle motor is available by special order.

(Note 2) This explains the model name system of a spindle motor, and all combinations of motor types listed above do not exist.

Ť	
~	
~	
Ē	
S	
≺	
Ś	
-	
П	
2	
-	

output (Standard specification) ihort-time rated output 2.2kW 3.7kW	5 Specificat The SJ-4-V specification	ion code Series is indicated with a code (01 to 99).
5.5kW	6 Special sp	pecifications
7.5kW	Symbol	Special specifications
11kW	None	None
15kW	Z	High-speed bearing
18.5kW		
22kW		
26kW		
37kW		
45kW		
55kW		

Motor type

DRIVE SYSTEM SERVO MOTOR 200V

HG75

■HG Series

	I-axis type	101D3-L-V1-					10		40	00
	2-axis type	MDS-E-V2-				4	40 20		40	80
Compatible drive unit	Multi axis integrated type	MDS-EM-SPV3-				10	040		10040	xxx80* 200120
	Regenerative resistor type	MDS-EJ-V1-				3	30		40	80
Output Stall torque	8	[N · m]50 40 30 20					13.0		23.3	42.0
Max. lorque		10 0			2.9			5.9.	9.0	
Rated output		[kW]				0	.5		1.0	1.5
Motor inertia	speed	[x10 ⁻⁴ kg·m ²]				40	1		11.9	4000
Motor inertia w	vith a brake	[×10 ⁻⁴ kg·m ²]				8	.3		14.1	20.0
Degree of protection	on (The shaft-through p	ortion is excluded.)	under	development		IP	67		IP67	IP67
Outline dimens (Without a bra D48 encoder)	sion drawing ke, Straight shaft,	[mm]								
(Note) The tota	al length will be	fuuul				118	5		140.5	100 5
when using an	D51or D74						Ĩ			162.5
encoder.								ļ		
Flange fitting o	diameter	[mm]				φ1	110		φ110	φ110
Mass (with a h	r orake)	[mm]				4.8	24 (6.8)		φ24 6 5(8 5)	φ24 8 3(10 3)
Absolute position	67,108,864 [p/re	v] (D74)				4.0	(0.0) E		E	E
encoder compatible	4,194,304 [p/rev] (D51)					E		E	E
drive unit	1,048,576 [p/rev] (D48)				EM	l, EJ		EM, EJ	EM, EJ
	Motor type		HG224	HG	204				HG354	
	Motor type 1-axis type	MDS-E-V1-	HG224 80	HG -	204	80	-		HG354	160
Compatible	Motor type 1-axis type 2-axis type	MDS-E-V1- MDS-E-V2-	HG224 80 80 160	HG - -	204	80 80 160	-		HG354 _ _	160 160 160W
Compatible drive unit	Motor type 1-axis type 2-axis type Multi axis integrated type	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3-	HG224 80 160 xxx80* 200120	HG - - -	204	80 80 160 xxx80* 200120	-		HG354 - - 200120	160 160 160W -
Compatible drive unit	Motor type 1-axis type 2-axis type Multi axis integrated type Regenerative resistor type	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3- MDS-EJ-V1-	HG224 80 160 xxx80* 200120 80	HG - - 80	204 x 2	80 80 160 xxx80* 200120 -			HG354 - - 200120 -	160 160 160W - -
Compatible drive unit Output Stall torque Max. torque	Motor type 1-axis type 2-axis type Multi axis integrated type Regenerative resistor type	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3- MDS-EJ-V1- [N·m]50 40 30 20 10	HG224 80 80 160 xxx80* 200120 80 46.5	HG - - 80 13.7	204 x 2 13	80 80 160 cxx80* 00120 - 47:0	- - 100 <u>-</u> 6: <u>-</u> 6: <u>-</u>	5.0	HG354 - 200120 - 	160 160 160W - - - - - - - - - - - - - - - - - - -
Compatible drive unit Output Stall torque Max. torque	Motor type 1-axis type 2-axis type Multi axis integrated type Regenerative resistor type	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3- MDS-EJ-V1- [N·m]50 40 30 20 10 0	HG224 80 80 160 xxx80* 200120 80 46.5	HG - - 80 42.0	204 x 2	80 80 160 cox80* 00120 - 47:0 		5.0	HG354 - 200120 - 	160 160 160W - - - - - - - - - - - - - - - - - - -
Compatible drive unit Output Stall torque Max. torque Rated output	Motor type 1-axis type 2-axis type Multi axis integrated type Regenerative resistor type	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3- MDS-EJ-V1- [N·m]50 40 30 20 10 0 (kW]	HG224 80 80 160 xxx80* 200120 80 46.5 12.0 2.2 4000	HG - - 80 42.0 - 13.7 2	204 x 2 	80 80 160 cxx80* 00120 - 47:0 	- - 100 - - - - - - - - - - - - - - - -	5.0	HG354 - 200120 - 	160 160 160W - - - - - - - - - - - - - - - - - - -
Compatible drive unit Output Stall torque Max. torque Rated output Max. rotation s Motor inertia	Motor type 1-axis type 2-axis type Multi axis integrated type Regenerative resistor type	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3- MDS-EJ-V1- [N·m]50 40 30 20 10 0 (kW] [r/min] [x10*kg-m ²]	HG224 80 80 160 xxx80* 200120 80 46.5 12.0 2.2 4000 23.7	HG - - 80 42.0 - 13.7 2 40 38	204 x 2 13 2 	80 80 160 cox80* 00120 - 47.0 		5.0	HG354 - 200120 - 	160 160 160W - - - - - - 22.5
Compatible drive unit Output Stall torque Max. torque Max. torque Max. rotation s Motor inertia Motor inertia	Motor type 1-axis type 2-axis type Multi axis integrated type Regenerative resistor type speed vith a brake	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3- MDS-EJ-V1- [N·m]50 40 30 20 10 0 (kW) [r/min] [×10 ⁴ kg·m ²] [×10 ⁴ kg·m ²]	HG224 80 80 160 xxx80* 200120 80 46.5 12.0 2.2 4000 23.7 25.9	HG - - 80 42.0 - 13.7 2 40 33 44	204 x 2 13 	80 80 160 cox80* 00120 - 47.0 		5.0	HG354 - 200120 - 	160 160 160W - - - - - - - - - - - - - - - - - - -
Compatible drive unit Output Stall torque Max. torque Max. rotation s Motor inertia Motor inertia Motor inertia	Motor type 1-axis type 2-axis type Multi axis integrated type Regenerative resistor type speed vith a brake on (The shaft-through p	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3- MDS-EJ-V1- [N·m]50 40 30 20 10 0 [kW] [r/min] [×10 ⁴ kg·m ²] [×10 ⁴ kg·m ²] [×10 ⁴ kg·m ²] [×10 ⁴ kg·m ²] [×10 ⁴ kg·m ²]	HG224 80 80 160 xxx80* 200120 80 46.5 12.0 12.0 2.2 4000 23.7 25.9 IP67	HG - - 80 42.0 - 13.7 2 440 33 440 1P	204 x 2 13 2 2 2 2 2 2 2 2 3 3 3 3 3 67 67 67 67 67 67 7 7 7 7 7 7 7 7 7 7 	80 80 160 coxx80* 00120 - 47:0 		5.0	HG354 - 200120 - 	160 160 160W - - - - - - - - - - - - - - - - - - -
Compatible drive unit Output Stall torque Max. torque Max. rotation s Motor inertia Motor inertia v Degree of protection Outline dimens (Without a bra D48 encoder)	Motor type 1-axis type 2-axis type Multi axis integrated type Regenerative resistor type speed vith a brake on (The shaft-through p sion drawing ke, Straight shaft,	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3- MDS-EJ-V1- [N·m]50 40 30 20 10 0 [kW] [r/min] [×10 ⁴ kg·m ²] [×10 ⁴ kg·m ²] ortion is excluded.)	HG224 80 80 160 xxx80* 200120 80 46.5 12.0 2.2 4000 23.7 25.9 IP67 130 S0. 130 S0.	HG - - 80 42.0 - 13.7 2 440 33 440 176 176	204 x 2 13 	80 80 160 cox80* 00120 - 47.0 		5.0	HG354 - 200120 - 22.5 3.5 75.0 84.7 IP67 176 S0. 183 5	160 160 160W - - - - - - - - - - - - - - - - - - -
Compatible drive unit Output Stall torque Max. torque Max. torque Max. rotation s Motor inertia Motor inertia w Degree of protection (Without a bra D48 encoder) (Note) The tott 3.5mm longer when using an encoder.	Motor type 1-axis type 2-axis type Multi axis integrated type Regenerative resistor type speed vith a brake on (The shaft-through p sion drawing ke, Straight shaft, al length will be th D51or D74 tiameter	MDS-E-V1- MDS-E-V2- MDS-EM-SPV3- MDS-EJ-V1- [N·m]50 40 0 20 10 0 (kW] [r/m] [x10 ⁴ kg·m ²] (x10 ⁴ kg·m ²] ortion is excluded.) [mm]	HG224 80 80 160 xxx80* 200120 80 46.5 12.0 2.2 4000 23.7 25.9 IP67 130 S0 184.5 184.5 4110	HG 	204 x 2 13 	80 80 160 cox80* 100120 - 47.0 	- - - 100 - - - - - - - - - - - - - - -	5.0	HG354 - 200120 - 220120 - 75.0 84.7 IP67 176 50. 176 50. 177 50. 177 50. 177 50. 177 50. 176 50. 176 50.	160 160 160W - - - - - - - 4000

HG105

HG104

φ35 19.0(25.0)

EM

Е

HG54

HG154

■HG Series

	Motor type		HG123	HG223
1	I-axis type	MDS-E-V1-		40
2	2-axis type	MDS-E-V2-		40 80
drive unit	Multi axis ntegrated type	MDS-EM-SPV3-		10040
F	Regenerative resistor type	MDS-EJ-V1-	40	40
Output	_	[N ⋅ m]100 80 60		
Stall torque	-	40		
Max. torque		20 0	7.0	12.0
Rated output		[kW]	1.2	2.2
Max. rotation spe	eed	[r/min]	3000	3000
Motor inertia		[×10 ⁻⁴ kg ⋅ m ²]	11.9	23.7
Motor inertia with	n a brake	[×10 ⁻⁴ kg · m ²]	14.1	25.9
Degree of protection (The shaft-through p	ortion is excluded.)	IP67	IP67
Outline dimensio (Without a brake, D48 encoder) (Note) The total I 3.5mm longer when using an D encoder.	n drawing , Straight shaft, ength will be 51or D74	[mm]		130 50
Flange fitting dia	meter	[mm]	φ 110	φ110
Shaft diameter		[mm]	φ 2 4	φ24
Mass (with a bral	ke)	[kg]	6.5(8.5)	10.0(12.
Absolute position 6	67,108,864 [p/re	ev] (D74)	E	E
encoder compatible 4	4.194.304 [p/rev	/l (D51)		F

	Motor type		HG703	HG90
	1-axis type	MDS-E-V1-	160W	320
	2-axis type	MDS-E-V2-	160W	-
drive unit	Multi axis integrated type	MDS-EM- SPV3-	-	-
	Regenerative resistor type	MDS-EJ-V1-	-	-
		[N·m]200		208.0
Output		150	152.0	
Stall torque		100		
Max. torque	ō	50	49.0	58.8
		0		
Bated output		[F/W]	7.0	9.0
Max rotation s	need	[r/min]	3000	3000
Motor inertia	.poou	[×10-4ka · m ²]	154.0	196.0
Motor inertia w	rith a brake	[×10 ⁻⁴ kg·m ²]	163.7	205.7
Degree of protection	on (The shaft-through p	ortion is excluded.)	IP67	IP67
Outline dimension drawing ((Without a brake, Straight shaft, D48 encoder) (Note) The total length will be 3.5mm longer when using an D51or D74 encoder.		[mm]		204 SG
Flange fitting d	liameter	[mm]	φ114.3	φ 18 0
Shaft diameter	·	[mm]	φ 3 5	φ42
Mass (with a b	rake)	[kg]	32.0(38.0)	45.0(51
Absolute position	67,108,864 [p/re	ev] (D74)	_	_
encoder compatible	4,194,304 [p/rev	J (D51)	E	L F
	1 1 U48 5 /6 In/rev	1111481		1

 Mass (whr a brake)

 Absolute position encoder compatible
 67,108,864 [p/rev] (D74)

 4,194,304 [p/rev] (D51)
 1,048,576 [p/rev] (D48)

[kg]

Mass (with a brake)

φ24 10.0(12.0)

Е

F

EM, EJ

*Refer to "MDS-EM Series Multi-hybrid drive" in this book for compatible drive unit type. (Note) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

EJ

φ35 12.0(18.0)

E EM

EJ

57

*Refer to "MDS-EM Series Multi-hybrid drive" in this book for compatible drive unit type. (Note) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

SERVO MOTOR 200V

19 DRIVE SYSTEM

DRIVE SYSTEM DIRECT-DRIVE MOTOR 200V

■TM-RB Series

(Note 1) The encoder should be procured by the user.

(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

DRIVE SYSTEM LINEAR SERVO MOTOR 200V

■LM-F Series

Linear servo	Primary s	ide type	LM-FP2B-06M-1WW0	LM-F
motor type	Secondary	side type	LM-FS201WW0	LM-
	1-axis type	MDS-E-V1-	40	
Compatible	2-axis type	MDS-E-V2-	40	
drive unit	Regenerative resistor type	MDS-EJ-V1-	40	
		[N]6000		
		5000		
Thrust force		4000		
Continuous (na	tural-cooling)	3000		
Continuous (liqu	uid-cooling)	2000	1800	
Maximum		2000	600	
		1000	300 000	
		0		
Rated thrust		[N]	600	
Maximum spee	ed (Note 1)	[m/s]	2.0	_
Magnetic attrac	ction force	[N]	4500	
Degree of prote	ection		IPUU Primony sido Socondony sido	Brimony
Outline dimension drawing		[mm]	290 1000 120 120 120 120 120	120
	Primary side (co	il)	9	
Mass [kg]	Secondary side	(magnet)	7.1(480mm) 9.0(576mm)	

Motor tuno	Primar	y side type	LM-FP4D-24M-1WW0	LM-I
wotor type	Seconda	ry side type	LM-FS401WW0	LM
	1-axis type	MDS-E-V1-	160	
Compatible	2-axis type	MDS-E-V2-	160	
drive unit	Regenerative resistor type	MDS-EJ-V1-	-	
Thrust force Continuous (na Continuous (liq Maximum	tural-cooling) [uid-cooling) [[N]20000 15000 10000 5000 0	7200 12002400	
Rated thrust		[N]	2400	
Maximum spe	ed (Note 1)	[m/s]	2.0	
Magnetic attra	ction force	[N]	18000	
Degree of prot	ection		IP00	
Outline dimension drawing		[mm]	530 480 576 1000 <u>•••••</u> 15019.5	
	Primary side	(coil)	28	

(Note 1) The maximum speed in actual use is either the linear scale's ma (Note 2) 400V specifications (Note 3) Only the combination designated in this manual can be used for

(Note 3) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

LINEAR SERVO MOTOR 200V

■LM-F Series (Dual-axis drive unit)

(Note 1) The maximum speed in actual use is either the linear scale's maximum speed or this specified value, whichever is smaller. (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

DRIVE SYSTEM SPINDLE MOTOR 200V

■SJ-D Series (Normal specifications)

	Motor type		SJ-D3.7/100-01	SJ-D5.5/100-01	SJ-D5.5/120-01	SJ-D7.5/100-01	SJ-D7.5/120-01
	1-axis type	MDS-E-SP-	80	80	80	160	160
Competible	2-axis type	MDS-E-SP2-	80 16080(M)	80 16080(M)	80 16080(M)	16080(L)	16080(L)
drive unit	Multi axis integrated type	MDS-EM-SPV3-	-	100xx	100xx	100xx	100xx
	Regenerative resistor type	MDS-EJ-SP-	80	100	100	120	120
Output Short-time rating		kW 6 4 2 2 2 2 2 0 1500 600 10000 rmin Short-time (15min)	kW 6 4 0 1500 6000 10000 r/min Short-time (30min) □	KW 5.5 6 4 - - - - - - - - - - - - -	KW 77.5 6 4 0 1500 6000 10000 rmin Short-time (30min)	^{KW} 77.5 6 15.5 0 1500 6000 12000 1500 6000 12000 rmin Short-time (30min) □	
Standard output	t during accoloration/de	coloration [k]M]	27	5.5	55	75	75
Actual accelera	tion/deceleration output	t (Note 2) [kW]	4 44	6.6	6.6	9	9
Base rotation	sneed	[r/min]	1500	1500	1500	1500	1500
Max rotation s	speed in constant outr	out range [r/min]	6000	6000	6000	6000	6000
Maximum rot	ation speed	[r/min]	10000	10000	12000	10000	12000
Continuous ra	ated torque	[N·m]	14.0	23.6	23.6	35.0	35.0
Motor inertia		[×10 ⁻⁴ kg·m ²]	0.0074	0.013	0.013	0.023	0.023
Degree of protec	tion (The shaft-through po	ortion is excluded.)	IP54	IP54	IP54	IP54	IP54
Outline dimer	nsion		174 SQ.	174 SQ.	174 SQ.	204 SQ.	204 SQ.
drawing(flang	je type)	[mm]					
Flange fitting	diameter	[mm]	φ 15 0	φ 150	φ150	φ180	φ180
Shaft diameter	er	[mm]	φ 2 8	φ 2 8	φ28	φ32	φ32
Mass		[kg]	26	39	39	53	53

	Motor type		SJ-D11/100-01	
	1-axis type	MDS-E-SP-	160	-
	2-axis type	MDS-E-SP2-	16080(L)	-
Compatible drive unit	Multi axis integrated type	MDS-EM-SPV3-	16080	100xx
	Regenerative resistor type	MDS-EJ-SP-	160	-
Output Acceleration/I %ED rating Short-time rat Continuous ra	Deceleration		KW 15 0 10 10 10 10 10 10000 rmin Short-time (30min)	kW 77.5 8 5.5 4 2 0 2000 2800 8000 %ED rating (25%
Standard output	t during acceleration/	deceleration [kW]	11	7.5
Actual accelera	tion/deceleration out	put (Note 2) [kW]	13.2	9
Base rotation	speed	[r/min]	1500	
Max. rotation s	peed in constant out	put range [r/min]	4500	
Maximum rota	ation speed	[r/min]	10000	
Continuous ra	ated torque	[N·m]	47.7	
Motor inertia		[×10 ⁻⁴ kg ⋅ m ²]	0.031	
Degree of protect	ion (The shaft-through p	ortion is excluded.)	IP54	
Outline dimen drawing(flang	ision e type)	[mm]	489	
Flange fitting	diameter	[mm]	¢180	
Shart diamete	1	[mm]	φ48 C4	
Mass		[kg]	64	

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

SPINDLE MOTOR 200V

■SJ-D Series (Hollow shaft specifications)

Motor type		SJ-D5.5/120-02T-S			
1-axis type	MDS-E-SP-	_	160	200	
2-axis type	MDS-E-SP2-	-	16080(L)	-	
Compatible Multi axis integrated type	MDS-EM-SPV3-	100xx	16080	200xx	
Regenerative resistor type	MDS-EJ-SP-	-	-	-	
Output Acceleration/Deceleration %ED rating Short-time rating Continuous rating		KW 7.5 6 6 9 0000 2800 8000 12000 r/min %ED rating (25%ED) 🖾	kW 15 10 5.5 2000 2800 6000 8000 12000 2000 2800 6000 8000 12000 rmin %ED rating (25%ED)	WW 15 10 10 10 10 5 3.7 5 0 10 4000 1200 rmin %ED rating (25%ED)	
Standard output during acceleration/d	eceleration [kW]	7.5	9.2	10.4	
Actual acceleration/deceleration outp	ut (Note 2) [kW]	9	11.04	12.48	
Base rotation speed	[r/min]	2800			
Max. rotation speed in constant outp	out range [r/min]	8000			
Maximum rotation speed	[r/min]	12000			
Continuous rated torque	[N·m]	12.6			
Motor inertia	[×10 ⁻⁴ kg · m ²]	0.0075			
Degree of protection (The shaft-through po	ortion is excluded.)	IP54			
Outline dimension drawing (flange type)	(mm)		174 SQ. 327 327		
Flange fitting diameter	[mm]	φ150			
Shaft diameter	[mm]		φ 2 8		
Mass	[kg]		24		

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-DG Series(High-output specifications)

	Motor type		SJ-DG3.7/120-03T	SJ-DG5.5/120-04T	SJ-DG7.5/120-05T	SJ-DG11/100-03T
	1-axis type	MDS-E-SP-	160	160	160	200
Compatible	2-axis type	MDS-E-SP2-	-	-	-	-
drive unit	Multi axis integrated type	MDS-EM-SPV3-	100xx	100xx	16080	200xx
Output %ED rating Short-time rat Continuous ra	ting	I	kW 6 4 2 0 1500 7000 10000 12000 rmin %ED rating (25%ED) SS Short-line (15min)	8 4 2 0 1500 5500 7000 12000 %ED rating (25%ED) Short-line (30min)	KW 15 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	KW 18 12 12 150 1500 4500 6000 10000 1500 4500 6000 10000 1700 1700 1700 1700 1700 1700
Standard outpu	It during acceleration/	deceleration [kW]	5.5	7.5	11.0	15.0
Actual accelera	ation/deceleration out	put (Note 2) [kW]	6.6	9.0	13.2	18.0
Base rotation	speed	[r/min]	1500	1500	1500	1500
Max. rotation s	speed in constant out	put range [r/min]	10000	7000	8000	6000
Maximum rota	ation speed	[r/min]	12000	12000	12000	10000
Continuous ra	ated torque	[N · m]	14.0	23.6	35.0	47.7
Motor inertia		[×10 ⁻⁴ kg · m ²]	0.0066	0.012	0.022	0.029
Degree of protect	tion (The shaft-through p	portion is excluded.)	IP54	IP54	IP54	IP54
Outline dimer	nsion drawing	Imml	174 SQ.	174 SQ.	204 SQ.	204 SQ.
(flange type)		,,				
Flange fitting	diameter	[mm]	φ 150	φ 150	φ180	φ180
Shaft diameter	er	[mm]	φ28	φ28	φ32	φ48
Mass		[kg]	24	37	50	61

■SJ-DJ Series (Compact & lightweight specifications)

	Motor type		SJ-DJ5.5/100-01	SJ-DJ5.5/120-01	SJ-DJ7.5/100-01
	1-axis type	MDS-E-SP-	80	80	160
Compatible	2-axis type	MDS-E-SP2-	80 16080(M)	80 16080(M)	16080(M)
drive unit	Multi axis integrated type	MDS-EM-SPV3-	100xx	100xx	100xx
	Regenerative resistor type	MDS-EJ-SP-	100	100	120
Output %ED rating Short-time ra Continuous ra	ting ating		KW 8 4 2 1500 2000 4500 10000 rmm	KW p 5.5 4 0 500 4500 12000 2000 rmm	KW 7.5 6 4 2 0 1500 2000 4500 10000 rmm
			%ED rating (25%ED)	%ED rating (25%ED)	Short-time (15min)
Standard outpu	it during acceleration/	deceleration [kW]	5.5	5.5	7.5
Actual accelera	ation/deceleration out	put (Note 2) [kW]	6.6	6.6	9
Base rotation	Short-time	[r/min]	1500	1500	1500
speed	Continuous	[r/min]	2000	2000	2000
Max. rotation s	speed in constant out	tput range [r/min]	4500	4500	4500
Maximum rot	ation speed	[r/min]	10000	12000	10000
Continuous ra	ated torque	[N·m]	17.7	17.7	26.3
Motor inertia		[kg · m²]	0.0074	0.0074	0.013
Degree of protect	tion (The shaft-through p	portion is excluded.)	IP54	IP54	IP54
Outline dimer	nsion drawing	[mm]	174 SQ.	174 SQ.	174 SQ.
(flange type)					
Flange fitting	diameter	[mm]	φ150	φ150	φ150
Shaft diameter	ər	[mm]	φ28	φ28	φ28
Mass		[kg]	26	26	39

	Motor type		SJ-DJ7.5/120-01	SJ-DJ11/100-01	SJ-DJ15/80-01
	1-axis type	MDS-E-SP-	160	160	200
	2-axis type	MDS-E-SP2-	16080(L)	16080(L)	-
Compatible drive unit	Multi axis integrated type	MDS-EM-SPV3-	100xx	16080	200xx
	Regenerative resistor type	MDS-EJ-SP-	120	160	-
Output %ED rating Short-time ra Continuous r	ting 🔲 ating 🗍		KW 7.5 6.0 4.0 15.5 15.0 1500 2000 4500 12000 rmm Short-time (15min)	KW 16 12 4 17.6 1500 2000 4500 10000 rmin short-time (15min)	WW 16 12 4 4 5500 2000 4000 8000 rmin %ED rating (15%ED)
Ctondord outpu		deceleration (LAM)	7.5		
Actual accolor	it during acceleration/	Deceleration [KVV]	7.5	12.0	10
Actual accelera	Short-time	put (Note 2) [KVV]	1500	15.2	18
speed	Continuous	[r/min]	2000	2000	3000
Max rotation of	pood in constant out		4500	2000	2000
Maximum rot	ation spood		4500	4500	4000
Continuous r	ation speed	[N.m]	26.3	35.8	52.5
Motor iportio		[ka m2]	20.3	0.022	0.021
Dogroo of protoc	tion (The shaft through a		0.013	0.023	0.031
Outline dime (flange type)	nsion drawing	[mm]	174 SQ. 417 417	204 SQ. 204 SQ. 439	
Flange fitting	diameter	[mm]	φ150	φ180	φ180
Shaft diamet	er	[mm]	φ28	φ 3 2	φ48
Mass		[kg]	39	53	64
(Note 1) On (Note 2) Act	y the combination	on designated deceleration of	in this manual can be used for the m output is 1.2-fold of "Standard output	notor and drive unit. Always use the d during acceleration/deceleration" or	esignated combination. "Short time rated output".

(Note 3) %ED is a load time ratio of operating time relative to a 10-minute cycle time. At 25%ED, for example, the operating time is 2.5 minutes and non-operation time is 7.5 minutes of a 10-minute cycle time.

SPINDLE MOTOR 200V

■SJ-DL Series (Low-inertia specification)

	Motor type		SJ-DL0.75/100-01	SJ-DL1.5/100-01	SJ-DL5.5/150-01T
	1-axis type	MDS-E-SP-	20	40	160
	2-axis type	MDS-E-SP2-	20	40	16080(L)
Compatible drive unit	Multi axis integrated type	MDS-EM-SPV3-	-	-	16080
	Regenerative resistor type	MDS-EJ-SP-	-	-	-
Output Acceleration/ Short-time ra Continuous ra	Deceleration ting ating		kW 1.5 1.0 0.9 <u>F</u> 0.75 0.5 0.5 1500 1800 10000 rmin Short-time (10min) ⊠	kW 2.0 1.5 1.5 1.0 0.5 0 1500 10000 rmin Short-time (10min)⊠	KW 15 10 5.5 0 2500 3000 4200 15000 rmin Short-time (15min) (30min)
Standard output	it during acceleration/de	celeration [kW]	0.9	1.5	11
Actual accelera	ation/deceleration outpu	It (Note 2) [kW]	1.08 1.8		13.2
Base rotation	speed	[r/min]	1500 1500		2500
Max. rotation s	speed in constant output	ut range [r/min]	10000	10000	15000
Maximum rot	ation speed	[r/min]	10000	10000	15000
Continuous ra	ated torque	[N·m]	2.55	4.77	14.1
Motor inertia		[kg · m ²]	0.0011	0.0019	0.0046
Degree of protect	tion (The shaft-through por	tion is excluded.)	IP54	IP54	IP54
Outline dimer (flange type)	nsion drawing	[mm]		130 SQ. 317	174 SQ.
Flange fitting	diameter	[mm]	φ110	φ110	φ150
Shaft diameter	er	[mm]	φ22	φ22	φ28
Mass		[kg]	10	14	30

	Motor type		SJ-DL5.5/200-01T	SJ-DL7.5/150-01T	
	1-axis type	MDS-E-SP-	160	160	
	2-axis type	MDS-E-SP2-	16080(L)	16080(L)	
Compatible drive unit	Multi axis integrated type	MDS-EM-SPV3-	-	16080	
	Regenerative resistor type	MDS-EJ-SP-	-	-	
Output Acceleration/Deceleration Short-time rating Continuous rating			kW 15 10 5.5 3.7 0 15000 20000 2500 3000 4200 rmin Short-time (15min) (30min)	kW 15 10 5 5 10 5 5 10 7.5 10 10 7.5 10 10 10 10 10 10 10 10 10 10 10 10 10	
Standard output during acceleration/deceleration [kW]			11	11	
Actual accelera	ation/deceleration out	tput (Note 2) [kW]	13.2	13.2	
Base rotation	speed	[r/min]	2500	1500	
Max. rotation s	peed in constant ou	tput range [r/min]	20000	8000	
Maximum rota	ation speed	[r/min]	20000	15000	
Continuous ra	ated torque	[N·m]	14.1	35.0	
Motor inertia		[kg · m²]	0.0046	0.016	
Degree of protect	tion (The shaft-through)	portion is excluded.)	IP54	IP54	
Outline dimer (flange type)	nsion drawing	[mm]	174 SQ. 	204 SQ. 489	
Flange fitting	diameter	[mm]	φ150	φ 180	
Shaft diamete	er	[mm]	ф28	φ32	
Mass		[ka]	30	56	

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-DL Series (Hollow shaft specifications)

	M			
	Motor type		SJ-DL5.5/200-011-S	
	1-axis type	MDS-E-SP-	160	
	2-axis type	MDS-E-SP2-	16080(L)	
Compatible drive unit	Multi axis integrated type	MDS-EM-SPV3-	-	
	Regenerative resistor type	MDS-EJ-SP-	-	
Output Acceleration/I Short-time rat Continuous ra	Deceleration		kW 15 10 5,5 10 5,5 10 11 10 5,5 3,7 15 0 2500 20000 2500 3000 4200 rmin Short-time (15min) (30min)	
Standard output during acceleration/deceleration [kW]		/deceleration [kW]	11	
Actual acceleration/deceleration output (Note 2) [kW]		tput (Note 2) [kW]	13.2	
Base rotation	speed	[r/min]	2500	
Max. rotation speed in constant output range [r/min]		tput range [r/min]	20000	
Maximum rota	ation speed	[r/min]	20000	
Continuous ra	ated torque	[N · m]	14.1	
Motor inertia		[kg · m²]	0.0046	
Degree of protect	ion (The shaft-through	portion is excluded.)	IP54	
Outline dimer	ision drawing		174 SQ.	
(flange type)		[mm]	377	
Flange fitting	diameter	[mm]	φ 1 50	
Shaft diamete	er	[mm]	φ22	
Mass		[kg]	28	

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

65

SPINDLE MOTOR 200V

19 DRIVE SYSTEM

■SJ-V Series (Normal specification)

	Motor type		SJ-V2.2-01T	SJ-VL2.2-02ZT *1	SJ-V3.7-02ZT	SJ-V7.5-03ZT
	1-axis type	MDS-E-SP-	40	40	80	160
Compatible	2-axis type	MDS-E-SP2-	40	40	80 16080(M)	16080(L)
	Multi axis integrated type	MDS-EM-SPV3-	-	-	-	16080
Output Short-time rating			kW 6 2.2 0 1500 6000 10000 r/min Short-time (15min) □	kW 3 2 1 0 3000 15000 rmin Short-time (15min) □	kW 6 4 2 0 3000 12000 15000 rmin Short-time (15min) □	WW 77.5 6 5.5 1500 10000 12000 rmin Short-time (30min) □
Standard output	t during acceleration/	deceleration [kW]	2.2	2.2	3.7	7.5
Actual accelera	Actual acceleration/deceleration output (Note 2) [kW]		2.64	2.64	4.44	9
Base rotation	speed	[r/min]	1500	3000	3000	1500
Max. rotation speed in constant output range [r/min]		6000	15000	12000	10000	
Maximum rot	Maximum rotation speed [r/min]		10000	15000	15000	12000
Continuous ra	ated torque	[N·m]	9.5	4.77	7.0	35
Motor inertia		[kg · m²]	0.00675	0.0024	0.00675	0.0245
Degree of pro	otection		IP44	IP44	IP44	IP44
Outline dimension drawing [mm] (flange type)		174 SQ.	130 SQ. 325	174 SQ.	204 SO.	
Flange fitting	diameter	[mm]	φ150 	φ110 μαρ	φ150 μαρ	φ180
Shaft diamete	er	[mm]	<u>φ28</u>	<u>φ22</u> <u>φ28</u>		¢32
IVIASS		[kg]	25	20	25	60

*1 The maximum rotation speed is 10000r/min.

	Motor type		SJ-V11-08ZT	SJ-V11-13ZT	SJ-V15-01ZT	
	1-axis type	MDS-E-SP-	200	200	200	
Compatible	2-axis type	MDS-E-SP2-	-	-	-	
drive unit	Multi axis integrated type	MDS-EM-SPV3-	200xx	200xx	200xx	
Output Short-time ra Continuous ra	ting		kW 15 10 7.5 0 1500 8000 rmin Short-time (30min)	kW 20 15 10 5 0 1500 6000 8000 rmin Short-time (30min) □	kW 20 15 15 10 5 1500 4500 8000 rmin Short-time (30min)	
Standard output during acceleration/deceleration [kW]			11	11	15	
Actual acceleration/deceleration output (Note 2) [kW]			13.2	13.2	18	
Base rotation speed [r/min]			1500	1500	1500	
Max. rotation speed in constant output range [r/min]			8000	6000	4500	
Maximum rot	ation speed	[r/min]	8000	8000	8000	
Continuous ra	ated torque	[N·m]	47.7	47.7	70	
Motor inertia		[kg · m²]	0.03	0.03	0.0575	
Degree of pro	otection		IP44	IP44	IP44	
Outline dimer	nsion drawing	(mar)	204 50.	204 50	250 SQ.	
(flange type)		[mm]				
Flange fitting	diameter	[mm]	φ 180	φ 180	φ 2 30	
Shaft diameter	er	[mm]	ф 48	φ48	φ48	
Mass		[kg]	70 70		110	

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-V Series (Normal specification)

	Motor type		SJ-V15-09ZT	SJ-V18.5-01ZT	SJ-V18.5-04ZT	SJ-V22-01ZT
	1-axis type	MDS-E-SP-	200	200	240	240
Compatible drive unit	2-axis type	MDS-E-SP2-	-	-	-	-
	Multi axis integrated type	MDS-EM-SPV3-	200xx	-	-	-
Output Short-time rating Continuous rating		kW 20 15 15 10 15 10 15 10 15 0 1500 6000 8000 rmin Short-time (30min)	kW 20 15 15 15 15 15 15 15 15 15 15 15 15 15	kW 20 15 15 10 1500 6000 8000 rmin Short-time (30min)	kW 30 20 18.5 1500 4500 8000 r/min Short-time (30min)	
Standard output during acceleration/deceleration [kW]			15	18.5	18.5	22
Actual acceleration/deceleration output (Note 2) [kW]			18	22.2 22.2		26.4
Base rotation speed [r/min]		1500	1500	1500	1500	
Max. rotation speed in constant output range [r/min]			6000	4500	6000	4500
Maximum rotation speed [r/min]		8000	8000	8000	8000	
Continuous ra	ated torque	[N · m]	70	95.5	95.5	118
Motor inertia		[kg · m²]	0.0575	0.0575	0.0575	0.08
Degree of pro	otection		IP44	IP44	IP44	IP44
Outline dimension drawing (flange type) [mi		[mm]	469.5	469.5	469.5	539.5
Flange fitting	diameter	[mm]	φ230	φ230	φ230	φ230
Shaft diamete	er	[mm]	φ48	φ48	ф 4 8	φ55
Mass		[kg]	110	110	110	135

	Motor type		SJ-V22-04ZT	SJ-V22-06ZT	SJ-V26-01ZT	SJ-V37-01ZT
	1-axis type	MDS-E-SP-	320	240	320	400
Compatible	2-axis type	MDS-E-SP2-	-	-	-	-
drive unit	Multi axis integrated type MDS-EM-SPV3-		-		-	-
Output Short-time rai Continuous ra	ting 🔲 ating 🔲		KW 20 10 1500 6000 8000 rmin Short-time (30min) □	KW 30 20 10 15 15 15 15 10 1500 1500 1500 15	kW 30 20 10 0 1500 6000 8000 rmin Short-time (30min) □	kW 60 20 20 1150 3450 6000 r/min Short-time (30min)
Standard output	Standard output during acceleration/deceleration [kW]		22	15	26	37
Actual accelera	Actual acceleration/deceleration output (Note 2) [kW]		26.4	18	31.2	44.4
Base rotation	Base rotation speed [r/min]		1500	1500	1500	1150
Max. rotation s	Max. rotation speed in constant output range [r/min]		6000	8000	6000	3450
Maximum rot	Maximum rotation speed [r/min]		8000	8000	8000	6000
Continuous ra	Continuous rated torque [N·m]		118	70.0	140	249
Motor inertia		[kg · m²]	0.08	0.0575	0.0925	0.34
Degree of pro	otection		IP44	IP44	IP44	IP44
Outline dimer	Outline dimension drawing		250 SQ.	250 50.	250 59.	320 50
(nange type)						
Flange fitting	diameter	[mm]	φ 2 30	φ230	φ 2 30	φ300
Shaft diameter	er	[mm]	ф 5 5	φ48	φ55	φ60
Mass		[kg]	135	110	155	300

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

67

SPINDLE MOTOR 200V

■SJ-V Series (Normal specification)

	Motor type		SJ-V45-01ZT	SJ-V55-01ZT	
	1-axis type	MDS-E-SP-	640	640	
Compatible	2-axis type	MDS-E-SP2-	-	-	
drive unit	Multi axis integrated type	MDS-EM-SPV3-	-	-	
Output Short-time rat Continuous ra	ing 🗌 ting 🗍		kW 60 45 37 1500 4500 6000 rmin	kW 55 40 40 0 1150 3450 4500 rmin	
Standard output	during appolaration	deceleration [k/M]			
Actual accolora	tion/doceleration.out	Dut (Noto 2) [kW]	45	00	
Rase rotation	eneed	[r/min]	1500	1150	
Max rotation st	need in constant out	nut range [r/min]	4500	3450	
Maximum rota	ation speed	[r/min]	6000	4500	
Continuous ra	ited torque	[N·m]	236	374	
Motor inertia		[kg · m ²]	0.34	0.8475	
Degree of pro	tection		IP44	IP44	
Outline dimen (flange type)	sion drawing	[mm]	320 SQ.	480 50.	
Flange fitting	diameter	[mm]	φ 300	ф 4 50	
Shaft diamete	r	[mm]	φ60	φ75	
Mass		[kg]	300	450	

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-V Series (Wide range constant output specification)

	Motor type		SJ-V11-01T	SJ-V11-09T	SJ-V15-03T	SJ-V18.5-03T
	1-axis type	MDS-E-SP-	160	160	200	240
Compatible drive unit	2-axis type	MDS-E-SP2-	16080(L)	16080(L)	-	-
	Multi axis integrated type	MDS-EM-SPV3-	16080	16080	200xx	-
Output Short-time rating Continuous rating		kW 15 10 5.5 0 750 6000 rmin Short-time (30min)	kW 15 10 555 0 750 6000 rrmin Short-time (30min) □	kW 15 10 5 7.5 0 750 6000 rmin Short-time (30min)	kW 15 10 5 0 750 6000 rmin Short-time (30min)	
Standard outpu	t during acceleration/	deceleration [kW]	5.5	7.5	9	11
Actual acceleration/deceleration output (Note 2) [kW]		6.6	9	10.8	13.2	
Base rotation speed [r/min]		750	750	750	750	
Max. rotation speed in constant output range [r/min]		6000	6000	6000	6000	
Maximum rotation speed [r/min]		6000	6000	6000	6000	
Continuous rated torque [N · m]		47.1	70.0	95.5	115	
Motor inertia [kg·m ²]		0.03	0.0575	0.0575	0.08	
Degree of pro	otection		IP44	IP44	IP44	IP44
Outline dimension drawing [mm] (flange type)		204 50	250 50.	250 50.		
Flange fitting	diameter	[mm]	φ 180	φ230	φ 2 30	φ230
Shaft diameter	er	[mm]	φ48	φ48	φ48	φ55
Mass		[kg]	70	110	110	135

	Motor type		SJ-V22-05T	
	1-axis type	MDS-E-SP-	320	
Compatible	2-axis type	MDS-E-SP2-	-	
drive unit	Multi axis integrated type	MDS-EM-SPV3-	-	
Output Short-time rat Continuous ra	ing 🛛 iting 🗖		kW 30 20 15 10 750 6000 rmin Short-time (30min)	kW 30 20 10 500 Sho
Standard output	t during acceleration	on/deceleration [kW]	15	
Actual accelera	tion/deceleration of	output (Note 2) [kW]	18	
Base rotation	speed	[r/min]	750	
Max. rotation s	peed in constant of	output range [r/min]	6000	
Maximum rota	ation speed	[r/min]	6000	
Continuous ra	ted torque	[N · m]	140	
Motor inertia		[kg · m²]	0.08	
Degree of pro	tection		IP44	
Outline dimen (flange type)	sion drawing	[mm]	250 SQ.	
Flange fitting	diameter	[mm]		
Shaft diameter	r	[[[[[[]]]	φ <u>2</u> 50 	
Mass		[ka]	135	
indoo		[rg]	100	

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

SPINDLE MOTOR 200V

■SJ-V Series (Hollow shaft specifications)

Motor type		SJ-VS7.5-14FZT	SJ-VKS2	26-09FZT	SJ-VKS30-16FZT				
	1-axis type N	IDS-E-SP-	160	32	20	33	20		
Compatible	2-axis type N	IDS-E-SP2-	16080(L)	-	-		-		
drive unit	Multi axis integrated type	Multi axis integrated type MDS-EM-SPV3-			-	-			
Output Short-time rat Continuous ra	ing ⊠□[ting □	2	kW 15 10 5 5 0 750 750 6000 rmin Short-time (15min) (30min)	kW 18 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	kW High-speed coil 18 12 12 12 12 13 15 12 12 15 12 15 15 15 15 15 15 15 15 15 15	kW 30 Low-speed coil 20 10 15 15 15 15 15 15 15 15 15 15 15 15 15	30 High-speed coil 20 18.5 10 4000 15000 rmin ((15min)□(30min)□		
Standard outpu	t during acceleration/dece	eleration [kW]	7.5	15		22			
Actual accelera	tion/deceleration output ((Note 2) [kW]	9	18		26	6.4		
Base rotation	speed	[r/min]	1500	1500	4000	1500	3000		
Max. rotation s	peed in constant output	range [r/min]	10000	4000	15000	4500	13600		
Maximum rota	ation speed	[r/min]	15000	4000 15000		4500	15000		
Continuous ra	ated torque	[N·m]	35	47.7 17.9		/0 4/./			
Motor inertia	4 4 ¹	[kg·m²]	0.0248	0.03		0.0575			
Degree of pro	tection		IP44	IP44		IP44			
Outline dimer	limension drawing [mm /pe)		nsion drawing		208 SQ.		3 SO.	250	
(flange type)									
Flange fitting	diameter	[mm]	φ180	φ 1	80	φ2	230		
Shaft diamete	er	[mm]	φ 3 2	φ	38	ф-	48		
Mass		[kg]	60	7	5	1:	30		

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-VL Series (Low-inertia specification)

	Motor type	9	SJ-VL11-02FZT		
	1-axis type	MDS-E-SP-	160		
Compatible	2-axis type	MDS-E-SP2-	16080(L)		
drive unit	Multi axis integrated typ	e MDS-EMSPV3-	16080		
Output Acceleration/I Short-time rat Continuous ra	Deceleration ing tting		kW 15 10 10 10 10 10 10 10 10 10 1000 15000 1500 cmin Short-time (15min)		
Standard output	t during accelerat	ion/deceleration [kW]	11		
Actual accelera	tion/deceleration	output (Note 2) [kW]	13.2		
Base rotation	speed	[r/min]	1500		
Max. rotation s	peed in constant	output range [r/min]	15000		
Maximum rota	ation speed	[r/min]	15000		
Continuous ra	ated torque	[N·m]	14.0		
Motor Inertia		[XIU*Kg·m²]	0.003		
Degree of pro	tection		IP44		
Outline dimen (flange type)	ision drawing	[mm]	174 SQ. 441		
Flange fitting	diameter	[mm]	φ150		
Shaft diamete	er	[mm]	φ28		
Mass		[kg]	42		

*1 The acceleration/deceleration frequency is limited by the regenerative resistor. *2 The maximum rotation speed is 15000r/min.

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

SPINDLE MOTOR 200V

DRIVE SYSTEM

■SJ-VL Series (Hollow shaft specifications)

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

DRIVE SYSTEM BUILT-IN SPINDLE MOTOR 200V

■SJ-BG Series

Motor	type (N	lote 1)	SJ-BG150B/150-01	
Compatible dr	ive unit	MDS-E-SP-	80	40
Output %ED rating Continuous ra	ting	800	KW 6 4 2 2 5.5 3.7 0 2500 7500 15000 r/min	kW 6 4 2 2 3.7 2.2 0 3500 10000 15000 r/min
			%ED rating(40%ED)	%ED rating(40%ED)
Standard output duri	ng accelerat	ion/deceleration [kW]	5.5	3.7
Actual acceleration/d	deceleration	output (Note 4) [kW]	6.6	4.44
Continuous base	e rotation	speed [r/min]	2500	3500
Maximum rota	tion spe	ed [r/min]	15000	15000
Continuous ra	ted torq	ue [N·m]	14.1	6.0
Rotor inertia		[kg · m²]	0.00575	0.005(0.0042)
Outline dimen drawing	sion	[mm]	021 0455(Note22)	
Mass	Stator	[kg]	6.3	7.1
ividoo	Rotor	[kg]	3.7	2.9(2.3)

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above. (Note 2) These dimensions are the dimensions after machine machining. (Note 3) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 4) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 5) A value in brackets is for the motor type which have (R) in the end of the type name.

BUILT-IN SPINDLE MOTOR 200V

■SJ-B Series

Motor type (Note 1)	SJ-2B4002T	SJ-2B4004T	SJ-2B4003T	SJ-2B4B03T	SJ-2B4112T
Compatible drive unit MDS-E-SP-	20	40	40	160	40
Output Acceleration/Deceleration Short-time rating Continuous rating	KW 0.9 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.0 0.4 0.000 r/min Short-time (15min)	kW 3 2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	KW 3 2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	kW 9 6 3 0 2500 5000 5500 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000	kW 3 2 1 2 500 2500 10000 r/min Short-time (15min) □
Standard output during acceleration/deceleration [kW]	0.75	1.5	2.2	7.5	2.2
Actual acceleration/deceleration output (Note 4) [kW]	0.9	1.8	2.64	9	2.64
Continuous base rotation speed [r/min]	3000	3000	3000	5500	2500
Maximum rotation speed [r/min]	10000	15000	12000	10000	10000
Continuous rated torque [N·m]	1.27	2.39	4.77	3.82	5.73
Rotor inertia [kg·m ²]	0.00078	0.00078	0.00138	0.00163	0.00168
Outline dimension [mm] drawing	120 120 120 120 120 120 120 120	120 120 120 120 120 120 120 120 120 120	095.(Note 2)	φ114.5(Note 2)	¢127.5(Note 2)
Stator [kg]	2.2	2.2	3.9	3.0	4.1
Rotor [kg]	0.9	0.9	1.7	1.5	1.7

Motor	r type (Note 1)	SJ-2B4111T	SJ-2B4105T	SJ-2B4102T	SJ-2B4310T	SJ-2B4301T
Compatible dri	ive unit MDS-E-SP-	80	80	80	80	160
Output Short-time rati Continuous ra	ing 🔲	kW 9 6 3 0 6000 10000 r/min Short-time (10min) □	kW 6 4 2 2 2 3000 12000 15000 r/min Short-time (15min)	KW 6 4 2 0 1500 6000 15000 1500 000 15000 r/min Short-time (10min)	kW 9 6 3 0 1500 4500 8000 1750 4500 8000 r/min Short-time (15min)⊠(30min)	KW 9 6 3.7 1100 6000 8180 12000 1500 r/min Short-time (30min)⊡
Standard output durin	ng acceleration/deceleration [kW]	5.5	3.7	3.7	5.5	7.5
Actual acceleration/d	deceleration output (Note 4) [kW]	6.6	4.44	4.44	6.6	9
Continuous base	e rotation speed [r/min]	6000	3000	1500	1750	1100
Maximum rota	ation speed [r/min]	10000	15000	15000	8000	12000
Continuous ra	ited torque [N·m]	5.89	7.00	7.00	20.2	32.1
Rotor inertia	[kg · m²]	0.00168	0.003	0.00425	0.0128	0.0128
Outline dimen drawing	sion [mm]	146 •45 •45 •127.5(Note 2)	200 (2 and (2 an	(7 250 (7 250 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	230 475 475 475 475 475 475 475 475	230 5240 5240 5240 5240
Mass	Stator [kg]	4.1	7.4	10	15	15
Mass	Rotor [kg]	1.7	3.0	4.3	5.6	5.6

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.

(Note 3) These dimensions are the dimensions after machine machining. (Note 3) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 4) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-B Series

Motor	type (Note 1)	SJ-2B4327T	SJ-2B4340T	
Compatible dri	ve unit	MDS-E-SP-	160	200	
Output Acceleration/ Short-time Continuous	Deceler rating s ratin	ation g	kW 15 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	kW 15 10 10 1350 1500 7500 8000 7500 80000000000000000000000000000000000	kW Low-sp 6 3 0 10
Standard out acceleration/	put duri deceler	ing [kW] ation	11	11	7.
Actual acceler deceleration of	ation/ utput (N	ote 4) [kW]	13.2	13.2	ç
Continuous bas	se rotatio	on speed [r/min]	1700	1500	10
Maximum ro	tation :	speed [r/min]	8000	8000	21
Continuous	rated t	orque [N · m]	30.9	47.7	52
Rotor inert	ia	[kg·m²]	0.0175	0.0175	
Outline dimension drawing		[mm]	(Z aton) 9:64 275	270 080 3'C apon) 9'C apon 9'C ap	
Maga	Stato	r [kg]	20	20	
IVIASS -	Rotor	[kg]	7.6	7.6	

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above. (Note 2) These dimensions are the dimensions after machine machining. (Note 3) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 4) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

BUILT-IN SPINDLE MOTOR 200V

■SJ-B Series

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.

(Note 2) These dimensions are the dimensions after machine machining.

(Note 3) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 4) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-B Series

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above. (Note 3) These dimensions are the dimensions after machine machining. (Note 3) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 4) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

BUILT-IN SPINDLE MOTOR 200V

■SJ-B Series

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.

(Note 3) These dimensions are the dimensions after machine machining. (Note 3) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 4) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-B Series

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above. (Note 3) These dimensions are the dimensions after machine machining. (Note 3) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 4) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

BUILT-IN SPINDLE MOTOR 200V

■SJ-B Series

■SJ-PMB Series

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.

(Note 2) These dimensions are the dimensions after machine machining.

(Note 3) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 4) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

DRIVE SYSTEM SERVO MOTOR 400V

■HG-H Series

I	Motor type		HG-H75	HG-H1
	1-axis type	MDS-EH-V1-		
Compatible	2-axis type	MDS-EH-V2-		
	Regenerative resistor type	MDS-EJH-V1		
		[N·m]50		
		40		
Output		30		
Stall torque]	00		
Max. torque	J	20		
		10		
		0		
Rated output		[kW]		
Max. rotation spee	ed	[r/min]		
Motor inertia		[×10 ⁻⁴ kg · m ²]		
Motor inertia with	a brake	[×10 ⁻⁴ kg · m ²]		
Degree of protecti	on		under des	
Outline dimension (flange type) (Without a brake, D48 encoder) (Note) The total le longer when using D74 encoder.	drawing Straight shaft ngth will be 3 g an D51 or	t, [mm] 3.5mm		
Flange fitting diam	neter	[mm]		
Shaft diameter		[mm]		
Mass (with a brak	e)	[kg]		
Absolute position	67,108,864	[p/rev] (D74)		
encoder compatible	4,194,304	[p/rev] (D51)		
drive unit	1,048,576	[p/rev] (D48)		

	Motor type		HG-H204	HG-H3	
	1-axis type	MDS-EH-V1-	40	80	
Compatible	2-axis type	MDS-EH-V2-	40 80	80 80W	
unve unit	Regenerative resistor type	MDS-EJH-V1	_	-	
		[N ⋅ m]210			
		180			
		150			
Output		120			
Stall torque]	120		90	
Max. torque]	90			
		60	47.0		
		30	13.7	22.5	
		0			
Rated output		[kW]	2.0	3.5	
Max. rotation spee	ed	[r/min]	40	000	
Motor inertia		[×10 ⁻⁴ kg · m ²]	38.3	75.0	
Motor inertia with a brake [×10 ⁻⁴ kg·m ²]			48.0	84.7	
Degree of protecti	on			1	
Outline dimension (flange type) (Without a brake, D48 encoder) (Note) The total le longer when using D74 encoder.	drawing Straight shafi ngth will be 3 I an D51 or	t, [mm] 3.5mm	176 SO.	176 S(183.5	
Flange fitting diam	neter	[mm]	φ114.3	φ114.	
Shaft diameter		[mm]	ф 3 5	φ 3 5	
Mass (with a brake	e)	[kg]	12.0(18.0)	19.0(25	
Absolute position	67,108,864	[p/rev] (D74)			
encoder compatible	4,194,304	[p/rev] (D51)	EH EH	EH EH	
drive unit	1,048,576	[p/rev] (D48)			

(Note) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

SERVO MOTOR 400V

5 DRIVE SYSTEM

SERVO MOTOR 400V

■HQ-H Series

Motor type	HQ-H903	HQ-H1103
Compatible drive unit 1-axis type MDS-EH-V1-	160	160W
Stall torque	70.0	110.0
[N·m]300 250 Output 200 Stall torque 150 Max. torque 150 100 50	170	260
Max. rotation speed [r/min]	3000	3000
Motor inertia [×10 ⁻⁴ kg·m ²]	230.0	350.0
Motor inertia with a brake [×10 ⁻⁴ kg·m ²]	254.0	374.0
Degree of protection	IP67	IP67
Outline dimension drawing (flange type) (Without a brake, Straight shaft, D48 encoder) [mm] (Note) The total length will be 3.5mm longer when using an D51 or D74N encoder.		
Flange fitting diameter [mm]	φ200	φ200
Shaft diameter [mm]	φ55	φ55
Mass (with a brake) [kg]	51.0(61.4)	74.0(84.4)
Absolute position 67,108,864 [p/rev] (D74) encoder compatible 4,194,304 [p/rev] (D51) drive unit 1,048,576 [p/rev] (D48)	ЕН	ЕН

5 DRIVE SYSTEM

DRIVE SYSTEM SPINDLE MOTOR 400V

■SJ-4-V Series (Normal)

Motor typ	е	SJ-4-V11-18T	SJ-4-V11-23ZT	SJ-4-
Compatible drive unit	MDS-EH-SP-	80	100	-
Output Short-time rating Continuous rating		kW 20 15 10 5 1500 4500 6000 r/min Short-time (30min)	kW 15 10 5 0 1500 8000 rmin Short-time (30min) □	kW 20 15 10 5 0 1500 5 1500 5 1500
Standard output during acceleration	deceleration [kW]	11	11	
Actual acceleration deceleration out	tput (Note 2) [kW]	13.2	13.2	
Base rotation spee	d [r/min]			1
Maximum rotation sp	eed [r/min]	6000	8000	
Continuous rated tor	que [N · m]	47	7.7	7
Inertia	[kg · m²]	0.	03	
Degree of protection	on	IP44	IP44	
Outline dimension drawing (flange type)	[mm]	490	204 SO. 490	
Flange fitting diameter Shaft diameter	[mm] [mm]	φ180 φ48	¢180 ¢48	
Mass	[kg]	70	70	

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 3) The rated output is guaranteed at the rated input voltage (380 to 440VAC 50Hz / 380 to 480VAC 60Hz) to the power supply unit. If the input voltage fluctuates and drops below 380VAC, the rated output may not be attained.

SPINDLE MOTOR 400V

■SJ-4-V Series (Normal)

Motor type	SJ-4-V26-08T	SJ-4-V30-15ZT	SJ-4-V37-04T	SJ-4-V45-02T	SJ-4-V55-03T	
Compatible drive unit MDS-EH-SP-	160	160	200	320	320	
Output Short-time rating Continuous rating	kW 30 22 10 1500 6000 r/min Short-time (30min)	kW 30 20 18.5 10 1500 8000 r/min Short-time (30min)	kW 60 20 0 1150 3450 r/min Short-time (30min)	kW 60 45 37 1500 3450 r/min Short-time (30min)	KW 60 45 45 1150 3450 r/min Short-time (30min)	
Standard output during acceleration/deceleration [kW]	26	22	37	45	55	
Actual acceleration/deceleration output (Note 2) [kW]	31.2	26.4	44.4	54	66	
Base rotation speed [r/min]	15	00	1150	1500	1150	
Maximum rotation speed [r/min]	6000	8000		3450		
Continuous rated torque [N·m]	140	118	249	236	374	
Inertia [kg·m ²]	0.10	0.08	0.31	0.55	0.85	
Degree of protection	IP44	IP44	IP44	IP44	IP44	
Outline dimension room	250 SQ.	250 50.	320 50	320 50.	480 50.	
drawing (flange [^{finin}] type)	585.5					
Flange fitting diameter [mm]	φ230	φ230	φ300	φ300	φ450	
Shaft diameter [mm]	φ55	φ55	φ 6 0	ф 6 0	φ75	
Mass [kg]	155	155	300	300	450	

■SJ-4-V Series (Wide range constant output)

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 3) The rated output is guaranteed at the rated input voltage (380 to 440VAC 50Hz / 380 to 480VAC 60Hz) to the power supply unit. If the input voltage fluctuates and drops below 380VAC, the rated output may not be attained.

DRIVE SYSTEM DRIVE UNIT

■MDS-E Series

1-axis servo drive unit

Drive	unit type		MDS-E-V1-20	MDS-E-V1-40	MDS-E-V1-80	MDS-E-V1-160	MDS-E-V1-160W	MDS-E-V1-320	MDS-E-V1-320W		
Drive unit category						1-axis servo					
Nominal maximum	current (peak)	[A]	20	40	80	160	160	320	320		
Rower input	Rated voltage	[V]		270 to 324DC							
Fower input	Rated current	[A]	7	7	14	30	35	45	55		
	Voltage	[V]			200 to 240AC Tolera	ble fluctuation: betw	een +10% and -15%				
Control	Current	[A]		MAX. 0.2							
power input	Frequency	[Hz]		50/60 Tolerable fluctuation: between +5% and -5%							
Control method			Sine wave PWM control method								
Dynamic brake	s		Built-in External (MDS-D-DBU)								
Machine end er	ncoder		Compatible								
Degree of prote	ection				IP20	(excluding terminal l	olock)				
Cooling method						Forced air cooling					
Mass		[kg]	3.8	3.8	3.8	3.8	4.5	5.8	7.5		
Unit outline dimen	sion drawing		A1	A1	A1	A1	B1	C1	D1		

2-axis servo drive unit

Drive	unit type		MDS-E-V2-20	MDS-E-V2-40	MDS-E-V2-80	MDS-E-V2-160	MDS-E-V2-160W		
Drive unit categ	jory			~	2-axis servo				
Nominal maximum of	current (peak)	[A]	20/20	40/40	80/80	160/160	160/160		
Rated voltage [V] 270 to 324DC									
Power input Rated current [A] 14 (7/7) 14 (7/7) 28 (14/14) 60 (30/30)									
	Voltage	[V]		200 to 240AC To	olerable fluctuation: between	+10% and -15%			
Control	Current	[A]			MAX. 0.2				
power input	Frequency	[Hz]		50/60 Tole	rable fluctuation: between +5	% and -5%			
Control method	Ì			S	ine wave PWM control metho	bd			
Dynamic brake	s				Built-in				
Machine end er	ncoder				Compatible				
Degree of prote	ection				P20 (excluding terminal block	<)			
Cooling method Forced air cooling									
Mass		[kg]	3.8 3.8 3.8 5.2 6.3						
Unit outline dimen	sion drawing		A1	A1	A1	B1	C1		

85

DRIVE UNIT

15 DRIVE SYSTEM

■MDS-E Series

1-axis spindle drive unit

Drive	unit type		MDS-E-SP-20	MDS-E-SP-40	MDS-E-SP-80	MDS-E-SP-160	MDS-E-SP-200	MDS-E-SP-240	MDS-E-SP-320	MDS-E-SP-400	MDS-E-SP-640
Drive unit categ	jory						1-axis spindle				
Nominal maximum of	current (peak)	[A]	20	40	80	160	200	240	320	400	640
Rower input	Rated voltage	[V]		270 to 324DC							
Fower input	Rated current	[A]	7	13	20	41	76	95	140	150	210
	Voltage	[V]			200 to	240AC Tolerabl	e fluctuation: be	tween +10% an	d -15%		
Control	Current	[A]					MAX. 0.2				
power input	Frequency	[Hz]			5	0/60 Tolerable fl	uctuation: betwe	en +5% and -5	%		
Control method						Sine wa	ve PWM control	method			
Degree of prote	ection					IP20 (e	xcluding termina	al block)			
Cooling method Forced air cooling											
Mass		[kg]	3.8	3.8	3.8	4.5	5.8	6.5	7.5	16.5	16.5
Unit outline dimen	sion drawing		A1	A1	A1	B1	C1	D1	D2	E1	F1

2-axis spindle drive unit

Drive	unit type		MDS-E-SP2-20	MDS-E-SP2-40	MDS-E-SP2-80	MDS-E-SP2-16080				
Drive unit categ	lory			2-axis	spindle					
Nominal maximum of	current (peak)	[A]	20/20	40/40	80/80	160/80				
Rower input	Rated voltage	[V]	270 to 324DC							
Fower input	Rated current	[A]	14 (7/7)	26 (13/13)	40 (20/20)	61 (41/20)				
	Voltage	[V]	200 to 240AC Tolerable fluctuation: between +10% and -15%							
Control	Current	[A]		MAX	. 0.2					
powermpar	Frequency	[Hz]	50/60 Tolerable fluctuation: between +5% and -5%							
Control method				Sine wave PWM control method						
Degree of prote	ection			IP20 (excluding	terminal block)					
Cooling method	i			Forced a	ir cooling					
Mass		[kg]	4.5	4.5	6.5	5.2				
Unit outline dimens	sion drawing		A1	A1	B1	B1				

Power supply unit

Power s	upply unit		MDS-E-CV-37	MDS-E-CV-75	MDS-E-CV-110	MDS-E-CV-185	MDS-E-CV-300	MDS-E-CV-370	MDS-E-CV-450	MDS-E-CV-550		
30-minute rated	output	[kW]	3.7	7.5	11.0	18.5	30.0	37.0	45.0	55.0		
Continuous rate	d output	[kW]	2.2	5.5	7.5	15.0	26.0	30.0	37.0	45.0		
Power input	Rated voltage	[V]			200 to 240A0	C Tolerable fluctua	ation: between +10	% and -15%				
Fower input	Rated current	[A]	15	26	35	65	107	121	148	200		
.	Voltage	[V]		200 to 240AC Tolerable fluctuation: between +10% and -15%								
Control power input	Current	[A]		MAX. 0.2								
powerinput	Frequency	[Hz]			50/60 T	olerable fluctuatio	n: between +5% a	nd -5%				
Regeneration m	nethod					Power regene	ration method					
Degree of prote	ction					IP20 (excluding	terminal block)					
Cooling method			Natural	cooling			Forced a	ir cooling				
Mass		[kg]	4.0 4.0 6.0 6.0 10.0 10.0 25.5									
Unit outline dimension drawing A2 A2 B1 B1 D1 D2							F1					

AC reactor

AC reactor r	nodel	D-AL-7.5K	D-AL-11K	D-AL-18.5K	D-AL-30K	D-AL-37K	D-AL-45K	D-AL-55K
Compatible power supply unit type	MDS-E-CV-	37, 75	110	185	300	370	450	550
Rated capacity	[kW]	7.5	11	18.5	30	37	45	55
Rated voltage	[V]		:	200 to 240AC Tolera	ble fluctuation: betw	een +10% and -15%		
Rated current	[A]	27	40	66	110	133	162	200
Frequency	[Hz]			50/60 Tolerable	fluctuation: betweer	n +5% and -5%		
Mass	[kg]	4.2	3.7	5.3	6.1	8.6	9.7	11.5
Unit outline dimension d	rawing	R1	R1	R2	R2	R3	R3	R4

■MDS-EH Series

1-axis servo drive unit

unit type		MDS-EH-V1-10	MDS-EH-V1-20	MDS-EH-V1-40	MDS-EH-V1-80	MDS-EH-V1-80W	MDS-EH-V1-160	MDS-EH-V1-160W	MDS-EH-V1-200
gory					1-axis	servo			
current (peak)	[A]	10	20	40	80	80	160	160	200
Rated voltage	[V]				513 to	648DC			
Rated current	[A]	0.9	1.6	2.9	6.0	8.0	11.9	16.7	39.0
Voltage	[V]			380 to 480A0	C Tolerable fluctua	tion: between +10)% and -15%		
Current	[A]				MAX	. 0.1			
Frequency	[Hz]			50/60 T	olerable fluctuatio	n: between +5% a	ind -5%		
Í					Sine wave PWN	I control method			
s				Buil	lt-in			External (M	DS-D-DBU)
ection				IP20	0 ([over all] / IP00	[Terminal block T	E1])		
Cooling method Forced air cooling									
	[kg]	3.8	3.8	3.8	3.8	4.5	5.8	7.5	16.5
Unit outline dimension drawing A1 A1 A1 A1 B1 C1 D1							E1		
	unit type jory surrent (peak) Rated voltage Rated current Voltage Current Frequency s s cotion d sion drawing	unit type jory jory urrent (peak) [A] Rated voltage [V] Rated current [A] Voltage [V] Current [A] Frequency [Hz] s s bction [kg] sion drawing	unit type MDS-EH-V1-10 jory	unit type MDS-EH-V1-10 MDS-EH-V1-20 jory	unit type MDS-EH-V1-10 MDS-EH-V1-20 MDS-EH-V1-40 jory	MDS-EH-V1-10 MDS-EH-V1-20 MDS-EH-V1-40 MDS-EH-V1-80 jory 1-axis 1-axis jurrent (peak) [A] 10 20 40 80 Rated voltage [V] 513 to 513 to 513 to Rated voltage [V] 380 to 480 AC Tolerable fluctua Current [A] 0.9 1.6 2.9 6.0 Voltage [V] 380 to 480 AC Tolerable fluctua MAX Trequency [Hz] 50/60 Tolerable fluctuatio Current [A] 50/60 Tolerable fluctuatio Sine wave PWIV Sine wave PWIV S 50/60 Tolerable fluctuatio IP20 ([over all] / IP00 IP20 ([over all] / IP00 d 50/60 Tolerable fluctuatio IP20 [[over all] / IP00 Forced a [kg] 3.8 3.8 3.8 3.8 sion drawing A1 A1 A1 A1	MDS-EH-V1-10 MDS-EH-V1-20 MDS-EH-V1-40 MDS-EH-V1-80 MDS-EH-V1-80 jory 1-axis servo 1-axis servo jurrent (peak) [A] 10 20 40 80 80 Rated voltage [V] 513 to 648DC 513 to 648DC Rated voltage [V] 380 to 480AC Tolerable fluctuation: between +10 Current [A] 0.9 1.6 2.9 6.0 8.0 Voltage [V] 380 to 480AC Tolerable fluctuation: between +10 MAX. 0.1 MAX. 0.1 Frequency [Hz] 50/60 Tolerable fluctuation: between +5% at Sine wave PWM control method s Built-in IP20 (Jore all] / IP00 [Terminal block TI export all / IP00 [Terminal block	MDS-EH-V1-10 MDS-EH-V1-20 MDS-EH-V1-40 MDS-EH-V1-80 MDS-EH-V1-80<	MDS-EH-V1-10 MDS-EH-V1-20 MDS-EH-V1-40 MDS-EH-V1-80 MDS-EH-V1-80W MDS-EH-V1-160W MDS-EH-V1-160W jory 1-axis servo 1-axis servo 1-axis servo 1-axis servo garrent (peak) [A] 10 20 40 80 80 160 160 Rated voltage [V] 513 to 648DC 513 to 648DC 11.9 16.7 Voltage [V] 380 to 480AC Tolerable fluctuation: between +10% and -15% MDX. 0.1 16.7 Current [A] 0.9 1.6 2.9 6.0 8.0 11.9 16.7 Voltage [V] 380 to 480AC Tolerable fluctuation: between +10% and -15% MDX. 0.1 16.7 MX. 0.1 Frequency [Hz] 50/60 Tolerable fluctuation: between +5% and -5% 50/60 Tolerable fluctuation: between +5% and -5% External (M scol Built-in Built-in External (M IP20 (Jorerall / IP00 [Terminal block TE1]) External (M other cols IP20 (Iorerall / IP00 [Terminal block TE1]) 50.8 7.5 5.8 7.5 5.8

2-axis servo drive unit

Drive	unit type		MDS-EH-V2-10	MDS-EH-V2-20	MDS-EH-V2-40	MDS-EH-V2-80	MDS-EH-V2-80W				
Drive unit categ	jory				2-axis servo						
Nominal maximum of	current (peak)	[A]	10/10	20/20	40/40	80/80	80/80				
Dever innut	Rated voltage	[V]		513 to 648DC							
Power input	Rated current	[A]	1.8 (0.9/0.9)	3.2 (1.6 /1.6)	5.8 (2.9/2.9)	12 (6.0/6.0)	16 (8.0/8.0)				
Control	Voltage	[V]		380 to 480AC To	elerable fluctuation: between	+10% and -15%					
Control	Current	[A]			MAX. 0.1						
power input	Frequency	[Hz]		50/60 Toler	able fluctuation: between +5	% and -5%					
Control method				Sine wave PW	/M control method · Current c	ontrol method					
Dynamic brakes	s				Built-in						
Degree of prote	ection				IP20						
Cooling method	ł				Forced air cooling						
Mass	ass [kg] 3.8 3.8 3.8 5.2 6.3										
Unit outline dimens	sion drawing		A1	A1	A1	B1	C1				

1-axis spindle drive unit

	-										
Drive	unit type		MDS-EH-SP-20	MDS-EH-SP-40	MDS-EH-SP-80	MDS-EH-SP-100	MDS-EH-SP-160	MDS-EH-SP-200	MDS-EH-SP-320	MDS-EH-SP-480	
rive unit categ	gory					1-axis	spindle				
ominal maximum o	current (peak)	[A]	20	40	80	100	160	200	320	480	
ower input	Rated voltage	[V]		513 to 648DC							
owerinput	Rated current	[A]	10	15	21	38	72	82	119	150	
to - t	Voltage	[V]			380 to 480A0	C Tolerable fluctua	tion: between +10)% and -15%			
ontrol	Current	[A]				MAX	. 0.1				
wei input	Frequency	[Hz]			50/60 T	olerable fluctuatio	n: between +5% a	ind -5%			
ontrol method	i					Sine wave PWN	I control method				
egree of prote	ection				IP2	0 ([over all] / IP00	[Terminal block T	E1])			
poling method Forced air cooling											
ass		[kg]	3.8	4.5	4.5	5.8	7.5	16.5	16.5	22.5	
nit outline dimen	sion drawing		A1	A1	B1	C1	D1	E1	E1	F1	

Drive	unit type		MDS-EH-SP-20	MDS-EH-SP-40	MDS-EH-SP-80	MDS-EH-SP-100	MDS-EH-SP-160	MDS-EH-SP-200	MDS-EH-SP-320	MDS-EH-SP-480	
Drive unit cateo	gory					1-axis	spindle				
Nominal maximum	current (peak)	[A]	20	40	80	100	160	200	320	480	
Dower innut	Rated voltage	[V]		513 to 648DC							
Power input	Rated current	[A]	10	15	21	38	72	82	119	150	
<u> </u>	Voltage	[V]			380 to 480A0	C Tolerable fluctua	ation: between +10)% and -15%			
Control	Current	[A]				MAX	. 0.1				
power input	Frequency	[Hz]			50/60 T	olerable fluctuatio	n: between +5% a	ind -5%			
Control method	i					Sine wave PWN	I control method				
Degree of prote	ection				IP2	0 ([over all] / IP00	[Terminal block TI	E1])			
Cooling method	d					Forced a	ir cooling				
Mass		[kg]	3.8	4.5	4.5	5.8	7.5	16.5	16.5	22.5	
Unit outline dimen	sion drawing		A1	A1	B1	C1	D1	E1	E1	F1	

(Note) Rated output capacity and rated speed of the motor used in combination with the drive unit are as indicated when using the power supply voltage and frequency listed.

The torque drops when the voltage is less than specified.

Power supply unit

Power sup	ply unit typ	e	MDS-EH-CV-37	MDS-EH-CV-75	MDS-EH-CV-110	MDS-EH-CV-185	MDS-EH-CV-300	MDS-EH-CV-370	MDS-EH-CV-450	MDS-EH-CV-550	MDS-EH-CV-750	
30-minute rated	l output	[kW]	3.7	7.5	11.0	18.5	30.0	37.0	45.0	55.0	75.0	
Continuous rate	ed output	[kW]	2.2	5.5	7.5	15	26	30	37	45	55	
Bower input	Rated voltage	[V]		380 to 480AC Tolerable fluctuation: between +10% and -15%								
Fower input	Rated current	[A]	5.2	13	18	35	61	70	85	106	130	
Ormhal	Voltage	[V]			380 to	480AC Tolerable	e fluctuation: be	tween +10% and	d -15%			
Control	Current	[A]					MAX. 0.1					
power input	Frequency	[Hz]			5	0/60 Tolerable fl	uctuation: betwe	en +5% and -5%	%			
Main circuit me	thod					Converter wi	th power regene	eration circuit				
Degree of prote	ection					IP20 (e:	xcluding termina	al block)				
Cooling method	i					F	orced air coolin	g				
Mass		[kg] 6.0 6.0 6.0 6.0 10.0 10.0 10.0 25.5 25.5								25.5		
Unit outline dimen	sion drawing		B1	B1	B1	B1	D1	D1	D1	F1	F1	

AC reactor

AC reactor	model	DH-AL-7.5K	DH-AL-11K	DH-AL-18.5K	DH-AL-30K	DH-AL-37K	DH-AL-45K	DH-AL-55K	DH-AL-75K
Compatible power supply unit type	MDS-EH-CV-	37, 75	110	185	300	370	450	550	750
Rated capacity	[kW]	7.5	11	18.5	30	37	45	55	75
Rated voltage	[V]	380 to 480AC Tolerable fluctuation: between +10% and -15%							
Rated current	[A]	14	21	37	65	75	85	106	142
Frequency	[Hz]			50/60 T	olerable fluctuatio	n: between +5% a	ind -5%		
Mass	[kg]	4.0	3.7	5.3	6.0	8.5	9.8	10.5	13.0
Unit outline dimension of	drawing	R1	R1	R2	R2	R3	R3	R5	R6

DRIVE UNIT

Unit Outline Dimension Drawing

D1

150

[Unit : mm]

■MDS-EM Series

Multi-hybrid drive

Drive	unit type		MDS-EM-SPV3-10040	MDS-EM-SPV3-10080	MDS-EM-SPV3-16080	MDS-EM-SPV3-20080	MDS-EM-SPV3-200120					
Drive unit cate	gory			3-axis s	servo, 1-axis spindle (with co	nverter)						
Nominal maximum curre	nt (spindle/servo)	A]	100/40×3	100/80×3	160/80×3	200/80×3	200/120×3					
Rower input	Rated voltage	V]		200 to 240AC To	plerable fluctuation: between	+10% and -15%						
Fower input	Rated current	A]	36	65								
	Voltage	V]		24DC Tolera	able fluctuation: between +10	% and -10%						
Control	Current	A]		MAX. 4								
power input	Frequency [H	lz]		50/60 Tole	rable fluctuation: between +5	% and -5%						
Control method	i		Sine wave PWM control method									
Regeneration r	nethod		Power regeneration method									
Dynamic brake	s(servo)		Built-in									
Machine end e	ncoder(servo)				Compatible							
Degree of prote	ection		IP20 (excluding terminal block)									
Cooling method	b				Forced air cooling							
Mass	[(g]	15	15	15	15	15					

Unit outline dimension drawing Drive unit MDS-EM-SPV3-

5 DRIVE SYSTEM

89

R1

R3

R4

R6

R5

DRIVE UNIT

[Unit : mm]

■MDS-EJ/EJH Series

All-in-one compact servo drive unit

Drive	unit type		MDS-EJ-V1-10	MDS-EJ-V1-15	MDS-EJ-V1-30	MDS-EJ-V1-40	MDS-EJ-V1-80	MDS-EJ-V1-100					
Drive unit categ	gory		1-axis servo (with converter)										
Nominal maximum	current (peak)	[A]	10	15	30	40	80	100					
Power input	Rated voltage	[V]	3-phase or single-phase 200	to 240AC Tolerable fluctuation	on: between +10% and -15%	3-phase 200 to 240AC	Tolerable fluctuation: be	tween +10% and -15%					
	Rated current	[A]	1.5	2.9	3.8	5.0	10.5	16.0					
Control power input	Voltage	[V]		Single-phase 200 to 240AC Tolerable fluctuation: between +10% and -15%									
	Current	[A]		MAX. 0.2									
	Frequency	[Hz]		5	0/60 Tolerable fluctuatio	n: between +5% and -5	%						
Control method	ł		Sine wave PWM control method										
Regeneration n	nethod		Power regeneration method										
Dynamic brake	s				Bui	ilt-in							
Machine end end	ncoder				Comp	patible							
Degree of prote	ection		IP20										
Cooling method	d		Natural	cooling		Forced air cooling							
Mass [kg]			0.8	1.0	1.4	2.1	2.1	2.3					
Unit outline dimen	sion drawing		J1a	J2	J3	J4a	J4a	J4b					

Drive	unit type		MDS-EJH-V1-10	MDS-EJH-V1-15	MDS-EJH-V1-20	MDS-EJH-V1-40				
Drive unit cate	gory		1-axis servo (with converter)							
Nominal maximum	current (peak)	[A]	10	10 15 20						
Deveringut	Rated voltage	[V]		·						
Power input	Rated current	[A]	1.4	2.5	5.1	7.9				
	Voltage	[V]	S	%						
Control	Current	[A]		MAX. 0.2						
power input	Frequency	[Hz]								
Control method	1		Sine wave PWM control method							
Regeneration r	nethod		Power regeneration method							
Dynamic brake	s		Built-in							
Machine end e	ncoder		Compatible							
Degree of prote	ection		IP20							
Cooling method			Natural	ir cooling						
Mass [kg]			0.8	1	1.4	2.3				
Unit outline dimen	sion drawing		J	1b	J4c	J5b				

All-in-one compact spindle drive unit

Drive	unit type		MDS-EJ-SP-20	MDS-EJ-SP-40	MDS-EJ-SP-80	MDS-EJ-SP-100	MDS-EJ-SP-120	MDS-EJ-SP-160						
Drive unit categ	lory		1-axis spindle (with converter)											
Nominal maximum of	current (peak)	[A]	20	40	80	100	120	160						
Doweringut	Rated voltage	[V]		3-phase 200 to 240AC Tolerable fl uctuation: between +10% and -15%										
Power input	Rated current	[A]	2.6	9.0	10.5	16.0	26.0	35.4						
<u> </u>	Voltage	[V]		Single-phase 200 to 240AC Tolerable fl uctuation: between +10% and -15%										
Control	Current	[A]	MAX. 0.2											
powermput	Frequency	[Hz]	50/60 Tolerable fluctuation: between +5% and -5%											
Control method			Sine wave PWM control method											
Regeneration n	nethod		Power regeneration method											
Degree of prote	ection		IP20 (excluding terminal block)											
Cooling method	I		Forced air cooling											
Mass		[kg]	1.4	2.1	2.3	4.0	4.0	6.2						
Unit outline dimen	sion drawing		J3	J4a	J4b	J5a	J5a	J6						

Unit outline dimension drawing

J4c

DRIVE UNIT

Unit [mm]

J4b

(80)

J6

DRIVE SYSTEM

DRIVE SYSTEM SELECTION OF THE POWER SUPPLY UNIT

For the power supply unit, calculate the spindle motor output and servo motor output each, and select the capacity satisfying the required rated capacity and the maximum momentary output.

■Calculation of Spindle Output

The spindle rated output and spindle maximum momentary rated output are calculated.

(1) Calculation of spindle rated output

The spindle rated output is calculated according to the following procedure.

(a) Spindle motor rated output

The spindle motor rated output is calculated from the following expression.

Spindle motor rated output =

MAX (continuous rated output, short-time rated output x short-time rated output coefficient α , %ED rated output × %ED rated output coefficient β)

(Note 1) For the spindle motor rated output, use the maximum value of "continuous rated output", "shorttime rated output × short-time rated output coefficient α ", and "%ED rated output × %ED rated output coefficient β ".

(Note 2) Select the maximum value for the spindle motor with multiple %ED rated output characteristics.

For the spindle short-time rated output coefficient α , use the value in the following table.

List of short-time rated output time and short-time rated output coefficient

Short-time rated output time	Short-time rated output coefficient α	Short-time rated output time	Short-time rated output coefficient $\boldsymbol{\alpha}$
1 minute	0.2	5 minutes	0.7
2 minute	0.4	6~7 minutes	0.8
3 minute	0.5	8~9 minutes	0.9
4 minute	0.6	10 minutes or more	1.0

(Note 1) Select the set time for the short-time rated output of your spindle motor from the list. E.g.) When the set time for the short-time rated output is "1/12h", it means "5 minutes".

(Note 2) For the motor with coil changeover specification, select the set time for the short-time rated output of the high-speed coil.

For the %ED rated output coefficient β , use the value in the following table.

List of %ED rated output time and %ED rated output coefficient

%ED rated output time	%ED rated output coefficient β			
More than or equal to 10% but less than 20%	0.7			
More than or equal to 20% but less than 30%	0.9			
More than or equal to 30%	1.0			

The spindle rated output is calculated from the following expression.

Spindle rated output

=Spindle motor rated output x motor output coefficient y of the combined spindle drive unit

For the spindle motor rated output of the above expression, use the value calculated in (a). For the motor output coefficient of the combined spindle drive unit, use the value corresponding to the used spindle drive unit in the in the following table.

Motor output coefficient list of combined spindle drive unit

|--|

Spindle motor		Combined spindle drive unit MDS-E-SP-											
rated output	20	40	80	160	200	240	320	400	640				
to 1.5kW	1.00	1.15	1.25	_	—	—	—	—	—				
to 2.2kW	—	1.00	1.15	1.30	—	—	—	_	—				
to 3.7kW	—	1.00	1.05	1.20	—	—	—	—	—				
to 5.5kW	—	—	1.00	1.10	1.20	—	—	—	—				
to 7.5kW	—	—	—	1.00	1.15	1.20	—	—	—				
to 11.0kW	—	—	—	1.00	1.05	1.10	1.15	_	—				
to 15.0kW	—	—	—	—	1.00	1.05	1.10	—	—				
to 18.5kW	—	—	—	—	1.00	1.00	1.05	1.10	—				
to 22kW	—	—	—	—	—	1.00	1.00	1.05	1.15				
to 26kW	—	—	—	—	—	—	1.00	1.00	1.10				
to 30kW	—	—	—	—	—	—	1.00	1.00	1.05				
to 37kW	—	—	—	—	—	—	—	1.00	1.05				
to 45kW	—	—	—	—	—	—	—	_	1.0				
to 55kW	—	_	_	_	_	—	_	_	1.0				

< MDS-EH Series >

Spindle motor	Combined spindle drive unit MDS-EH-SP-												
rated output	20	40	80	100	160	200	320	480	600				
to 2.2kW	1.00	1.15	1.30	—	_	_	_	—	_				
to 3.7kW	1.00	1.05	1.20	—	_	_	_	—	—				
to 5.5kW	—	1.00	1.10	1.20	_	—	_	—	—				
to 7.5kW	—	—	1.00	1.15	—	—	—	—	—				
to 11.0kW	—	_	1.00	1.05	1.15	_	_	—	_				
to 15.0kW	—	—	_	1.00	1.10	—	—	—	—				
to 18.5kW	—	_	-	1.00	1.05	1.10	_	—	—				
to 22kW	—	—	_	—	1.00	1.05	1.15	—	—				
to 26kW	—	_	-	—	1.00	1.00	1.10	1.20	—				
to 30kW	—	-	_	—	1.00	1.00	1.05	1.15	—				
to 37kW	—	_	_	—	_	1.00	1.05	1.10	1.10				
to 45kW	_	_	_	_	_	_	1.00	1.05	1.05				
to 55kW	—	_	_	_	_	_	1.00	1.00	1.00				
to 75kW	_	_	_	_	_	_	_	1.00	1.00				

POINT

[1] When the spindle motor applies to the wide range constant output specification or the high-torgue specification, the spindle rated output may become large.

[2] The spindle rated output is calculated from the motor output coefficient of the spindle drive unit used in combination with the spindle motor.

SELECTION OF THE POWER SUPPLY UNIT

(2) Calculation of spindle maximum momentary output

The spindle maximum momentary output is calculated from the following expression.

Spindle maximum momentary output

=MAX (short-time rated output × 1.2, output at acceleration/deceleration × 1.2, %ED rated output×1.2)

(Note) For the spindle rated output, use the largest one among "short-time rated output × 1.2", "output at acceleration/ deceleration × 1.2" and "%ED rated output×1.2".

■Calculation of Servo Motor Output

(1) Selection with rated output

(2) Selection with maximum momentary output

For the rated output and maximum momentary output of the servo motor, use the value corresponding to the servo motor in the following table.

Data for servo motor output selection

< 200V series >

Motor HG	75	105	54	104	154	224	204	354
Rated output (kW)	0.75	1.0	0.5	1.0	1.5	2.2	2.0	3.5
Maximum momentary output (kW)	2.6	3.6	2.3	5.0	9.0	12.3	8.0	18.0

Motor HG	123	223	303	453	703	903	142	302
Rated output (kW)	1.2	2.2	3.0	4.5	7.0	9.0	1.4	3.0
Maximum momentary output (kW)	4.0	7.5	12.0	22.0	28.0	41.0	3.8	7.4

< 400V series >

Motor HG-H	75	105	54	104	154	204	354	453	703	903
Rated output (kW)	0.75	1.0	0.5	1.0	1.5	2.0	3.5	4.5	7.0	9.0
Maximum momentary output (kW)	2.6	3.6	2.3	5.0	9.0	8.0	18.0	22.0	28.0	41.0

Motor HQ-H	903	1103
Rated output (kW)	9.0	11.0
Aaximum momentary output	33.0	50.0

(Note) The maximum momentary output in this table is reference data for selecting the power supply unit and is not data which guarantees the maximum output.

Selection of the Power Supply Unit

Select the power supply unit from the total sum of the rate output and the maximum momentary output.

(1) Calculation of required rated output

Power supply unit rated capacity > Σ (Spindle rated output) + 0.3 Σ (Servo motor rated output)

Substitute the output calculated from (1) of "Calculation of spindle output" and (1) of "Calculation of servo motor output" to the above expression, and calculate the total sum of the spindle rated output and servo motor rated output. According to this, select the power supply unit satisfying the rated capacity from the following table.

(2) Calculation of required maximum momentary output

Maximum momentary rated capacity of power supply unit ≥ Σ (Spindle maximum momentary output) + Σ (Maximum momentary output of servomotor accelerating/ decelerating simultaneously + Maximum momentary output of direct drive motor accelerating/ decelerating simultaneously)

Substitute the output calculated from (2) of "Calculation of spindle output" and (2) of "Calculation of servo motor output" to the above expression, and calculate the total sum of the "spindle maximum momentary output" and "output of servo motor accelerating/decelerating simultaneously". According to this, select the power supply unit satisfying the maximum momentary rated capacity from the following table.

(3) Selection of power supply unit

Select the power supply unit of which the capacity is larger than that selected in the item (1) and (2).

Power supply unit rated capacity and maximum momentary rated capacity

< MDS-E Series >									
Unit	MDS-E-CV-	37	75	110	185	300	370	450	550
Rated capacity (kW)		4.2	8	11.5	19	31	38	46	56
Maximum momentary rated capacity (kW)		16	23	39	60	92	101	125	175

< MDS-EH Series >

Unit	MDS-EH-CV-	37	75	110	185	300	370	450	550	750
Rated c	apacity (kW)	4.2	8	11.5	19	31	38	46	56	76
Maximum momentary rated capacity (kW)		16	23	39	60	92	101	125	175	180

- output increases more than the conventional motor.
- ⚠ CAUTION
- connection bar.
- drive unit.

5

SELECTION OF THE POWER SUPPLY UNIT

1. When reducing the time constant replacing the conventional motor with the HG or HG-H Series motor, the power supply capacity may rise because the motor maximum momentary

Therefore, make sure to check the selection with maximum momentary rated capacity.

2. When the large capacity drive unit (MDS-E-SP-400/640, MDS-EH-SP-200/320/480, MDS-EH-V1-200) is connected to the power supply unit, always install the drive unit proximally in the left side of the power supply unit and connect PN terminal with the dedicated DC

3. When using two large capacity drive units or more, the power supply unit is required for each

Required Capacity of Power Supply

For the power supply capacity, calculate the required spindle rated output and servo motor rated output each, and select the power supply capacity satisfying them.

(1) Spindle rate output required for power supply

The spindle rate output required for power supply is calculated from the following expression.

Spindle rate output required for power supply =

MAX (Spindle motor continuous rated output, Spindle motor output at accelerating/decelerating, Spindle motor short-time output) x motor output coefficient γ of combined spindle drive unit

(Note) For the spindle rate output required for the power supply, multiply the largest one of "spindle motor continuous rate output", "spindle motor output at acceleration/deceleration" and "spindle motor short-time output" by the motor output coefficient γ of the combined spindle drive unit. For the motor output coefficient of the combined spindle drive unit, use the value corresponding to the used spindle drive unit in "Motor output coefficient list of combined spindle drive unit " on (1)-(b) of "Calculation of spindle output"

(2) Servo motor rate output required for power supply

For the servo motor rate output required for power supply, use the value calculated in (1) of "Calculation of servo motor output"

(3) Calculation of rate output required for power supply

Rated capacity required for power supply =

 Σ (Spindle rate output required for power supply) + 0.3 Σ (servo motor rate output required for power supply)

Substitute the output calculated from the item (1) and (2) to the above expression, and calculate the rated capacity required for the power supply.

(4) Calculation of required power supply

Power supply capacity (kVA) = Σ {(Required rated capacity calculated in the item (3) (kW) / Capacity of selected power supply unit (kW)) × Power supply capacity base value (kVA)}

The power supply capacity base value corresponding to the capacity of the selected power supply unit is as the following table.

< MDS-E Series >

Unit	MDS-E-CV-	37	75	110	185	300	370	450	550	
Power supply cap	bacity base value (kVA)	5.3	11.0	16.0	27.0	43.0	53.0	64.0	78.0	
MDS-EH	Series >									
Unit	MDS-EH-CV-	37	75	110	185	300	370	450	550	750
Power supply car	acity base value (kVA)	5.3	11.0	16.0	27.0	43.0	53.0	64.0	78.0	107.

■Example for Power Supply Unit and Power Supply Facility Capacity

< MDS-E Series :	>
------------------	---

Example [·]	1)			
Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG354	(MDS-E-V2-160)	3.5kW	18kW
Y-axis	HG354	(MDS-E-V2-160)	3.5kW	18kW
Z-axis	HG354	(MDS-E-V1-160)	3.5kW	18kW
Spindle	Spindle motor 22kW	MDS-E-SP-320 (Output coefficient 1.0)	22kW	26.4kW
	Total		0.3× (3.5×3) +22 =25.15kW <31kW (E-CV-300)	(18×3) +26.4 =80.4kW <92kW (E-CV-300)

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-E-CV-300. Required power supply capacity (kVA) = (25.15 / 30) × 43 = 36.0 (kVA)

(Example 2	2)			
Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X1-axis	HG453	(MDS-E-V2-160)	4.5kW	22kW
X2-axis	HG453	(MDS-E-V2-160)	4.5kW	22kW
Y-axis	HG354	(MDS-E-V2-160)	3.5kW	18kW
Z-axis	HG354	(MDS-E-V2-160)	3.5kW	18kW
Spindle	Spindle motor 15kW	MDS-E-SP-200 (Output coefficient 1.0)	15kW	18kW
	Total		0.3× (4.5×2+3.5×2) +15 =19.8kW <31kW (E-CV-300)	22×2+18×2+18 =98.0kW <101kW (E-CV-370)
-	1	C II I I I I I I		1.070

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-E-CV-370. Required power supply capacity (kVA) = (19.8 / 37) × 53 = 28.4 (kVA)

(Example 3)								
Axis name	Motor	Drive unit	Rated output	Maximum momentary output				
X-axis	HG354	MDS-E-V1-160	3.5kW	18kW				
Y-axis	HG204	MDS-E-V2-80	2.0kW	8kW				
Z-axis	HG204	MDS-E-V2-80	2.0kW	8kW				
Spindle	Spindle motor 15kW (High-torque motor)	MDS-E-SP-320 (Output coefficient 1.1)	16.5kW	18kW				
	Total		0.3× (3.5+2.0×2) +16.5 =18.75kW <19kW (E-CV-185)	18+8×2+18 =52kW <60kW (E-CV-185)				

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-E-CV-185. Required power supply capacity (kVA) = (18.75 / 18.5) × 27 = 27.4 (kVA)

SELECTION OF THE POWER SUPPLY UNIT

5 DRIVE SYSTEM

< MDS-EH Series >

(Example 1)

	,			
Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG-H354	(MDS-EH-V2-80)	3.5kW	18kW
Y-axis	HG-H354	(MDS-EH-V2-80)	3.5kW	18kW
Z-axis	HG-H354	(MDS-EH-V1-80)	3.5kW	18kW
Spindle	Spindle motor 22kW	MDS-EH-SP-160 (Output 22kW)	22kW	26.4kW
	Total		0.3× (3.5×3) +22	(18×3) +26.4
	IOtal		<31kW (EH-CV-300)	<92kW (EH-CV-300)

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-EH-CV- 300. Required power supply capacity (kVA) = (25.15 / 30) × 43 = 36.0 (kVA)

(Example 2)

• •	•			
Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X1-axis	HG-H453	(MDS-EH-V2-80)	4.5kW	22kW
X2-axis	HG-H453	(MDS-EH-V2-80)	4.5kW	22kW
Y-axis	HG-H354	(MDS-EH-V2-80)	3.5kW	18kW
Z-axis	HG-H354	(MDS-EH-V2-80)	3.5kW	18kW
Spindle	Spindle motor 15kW	MDS-EH-SP-100 (Output coefficient 1.0)	15kW	18kW
	Total		0.3× (4.5×2+3.5×2) +15 =19.8kW <31kW (EH-CV-300)	22×2+18×2+18 =98.0kW <101kW (EH-CV-370)

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-EH-CV-370. Required power supply capacity (kVA) = (19.8 / 37) × 53 = 28.4 (kVA)

(Example 3)

<u> </u>	-					
Axis name	Motor	Drive unit	Rated output	Maximum momentary output		
X-axis	HG-H354	MDS-EH-V1-160	3.5kW	18kW		
Y-axis	HG-H204	MDS-EH-V2-80	2.0kW	8kW		
Z-axis	HG-H204	MDS-EH-V2-80	2.0kW	8kW		
Spindle	Spindle motor 15kW (High-torque motor)	MDS-EH-SP-320 (Output coefficient 1.1)	16.5kW	18kW		
	Total		0.3× (3.5+2.0×2) +16.5 =18.75kW <19kW (EH-CV-185)	18+8×2+18 =52kW <60kW (EH-CV-185)		

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-EH-CV-185. Required power supply capacity (kVA) = (18.75 / 18.5) × 27 = 27.4 (kVA)

Selection of Regenerative Resistor for Power Backup Unit (R-UNIT-6,7) and Capacitor Unit for Power Backup Unit (MDS-D/DH-CU)

When using the retraction function at power failure with MDS-D/DH-PFU, select to satisfy the stop operation for the regenerative resistor and the continuous rated output of the spindle motor for the capacitor unit.

(1) Selection of regenerative resistor for power backup unit

When using the retraction function at power failure, a resistor unit is required to make the spindle deceleration and stop after the retraction is completed.

1. When not using a resistor unit, control to coast the spindle motor after the retraction operation is completed.

2. Only the designated combination can be used for the power backup unit and the regenerative resistor.

(2) Selection of capacitor unit for power backup unit

When using the retraction function at power failure, the required number of capacitor units is decided by the continuous rated output [kW] of the spindle motor. Select according to the following specifications.

List of spindle continuous rated output and number of capacitor unit

Spindle continuous rated output	Number of capacitor unit
3.7kW or less	1
5.5kW or less	2
7.5kW or less	3
11kW or less	4
15kW or less	5
22kW or less	6

When selecting an additional axis drive unit to be connected to TE2 [L+,L-] (Converter voltage input terminal) of MDSEM-SPV3, calculate the spindle motor output and servo motor output each, and select the capacity so that the total sum should not exceed the rated capacity and the maximum momentary output of MDS-EM-SPV3.

The additional axis drive unit is spindle/servo drive unit which is operated by using the built-in power supply section of MDS-EM-SPV3.

Connectable drive units are determined by the rated capacity of MDS-EM-SPV3. The following is available capacities. Spindle drive unit: MDS-E-SP-20/40/80/160 Servo drive unit: MDS-E-Vx-20/40/80

■Calculation of Spindle Output

The spindle rated output and spindle maximum momentary rated output are calculated.

(1) Calculation of spindle rated output

The spindle rated output is calculated according to the following procedure.

(a) Spindle motor rated output

The spindle motor rated output is calculated from the following expression.

Spindle motor rated output =

MAX (continuous rated output, short-time rated output x short-time rated output coefficient α , %ED rated output × %ED rated output coefficient β)

(Note 1) For the spindle motor rated output, use the maximum value of "continuous rated output", "short-time rated output x short-time rated output coefficient α ", and "%ED rated output x %ED rated output coefficient ^β".

(Note 2) Select the maximum value for the spindle motor with multiple %ED rated output characteristics.

For the spindle short-time rated output coefficient α , use the value in the following table.

List of short-time rated output time and short-time rated output coefficient

Short-time rated output time	Short-time rated output coefficient α	Short-time rated output time	Short-time rated output coefficient α
1 minute	0.2	5 minutes	0.7
2 minutes	0.4	6 to 7 minutes	0.8
3 minutes	0.5	8 to 9 minutes	0.9
4 minutes	0.6	10 minutes or more	1.0

(Note 1) Select the set time for the short-time rated output of your spindle motor from the list. E.g.) When the set time for the short-time rated output is "1/12h", it means "5 minutes"

(Note 2) For the motor with coil changeover specification, select the set time for the short-time rated output of the high-speed coil.

For the %ED rated output coefficient β , use the value in the following table.

List of %ED rated output time and %ED rated output coefficient

%ED rated output time	%ED rated output coefficient β
More than or equal to 10% but less than 20%	0.7
More than or equal to 20% but less than 30%	0.9
More than or equal to 30%	1.0

SELECTION OF THE ADDITIONAL AXIS DRIVE UNIT

DRIVE SYSTEM SELECTION OF THE ADDITIONAL AXIS DRIVE UNIT

(b) Spindle rated output

The spindle rated output is calculated from the following expression.

Spindle rated output

=Spindle motor rated output x motor output coefficient y of the additional axis (spindle) drive unit

For the spindle motor rated output of the above expression, use the value calculated in (a). For the motor output coefficient of the combined spindle drive unit, use the value corresponding to the used spindle drive unit in the following table.

Motor output coefficient list of additional axis (spindle) drive unit < MDS-E Series >

Spindle motor	Additional axis (spindle) drive unit MDS-E-SP-					
rated output	20	40	80	160		
to 1.5kW	1.00	1.15	1.25	-		
to 2.2kW	-	1.00	1.15	1.30		
to 3.7kW	-	1.00	1.05	1.20		
to 5.5kW	-	-	1.00	1.10		
to 7.5kW	-	-	-	1.00		

POINT

[1] When the spindle motor applies to the wide range constant output specification or the high-torque specification, the spindle rated output may become large.

[2] The spindle rated output is calculated from the motor output coefficient of the spindle drive unit used in combination with the spindle motor.

(2) Calculation of spindle maximum momentary output

The spindle maximum momentary output is calculated from the following expression.

Spindle maximum momentary output

=MAX (short-time rated output × 1.2, output at acceleration/deceleration × 1.2, %ED rated output×1.2)

(Note) For the spindle rated output, use the largest one among "short-time rated output \times 1.2", "output at acceleration/ deceleration \times 1.2" and "%ED rated output \times 1.2".

■Calculation of Servo Motor Output

(1) Selection with rated output

(2) Selection with maximum momentary output

For the rated output and maximum momentary output of the servo motor, use the value corresponding to the servo motor in the table 3.

Data for servo motor output selection

< 200V series >

Motor HG	75	105	54	104	154	224	204	354
Rated output (kW)	0.75	1.0	0.5	1.0	1.5	2.2	2.0	3.5
Maximum momentary output (kW)	2.6	3.6	2.3	5.0	9.0	12.3	8.0	15.0
							-	
Motor HG	123	223	303	453	142	302		
Rated output (kW)	1.2	2.2	3.0	4.5	1.4	3.0	-	
Maximum momentary output (kW)	4.0	7.5	12.0	16.5	3.8	7.4		

(Note) The maximum momentary output in this table is reference data for selecting the additional axis drive unit connecting to MDS-EM-SPV3 and is not data which guarantees the maximum output.

Selection of the Additional Axis Drive Unit

Select the additional axis drive unit so that the total sum of the rated output and the maximum momentary output of spindle motor / servo motor is less than the rated capacity and maximum momentary rated capacity of MDS-EM-SPV3.

(1) Calculation of required rated output

MDS-EM-SPV3 rated capacity [20kW] > Σ (Spindle rated output) + 0.3 Σ (Servo motor rated output)

(Note) Calculate the spindle and servo motor rated output including not only the motor connected to the additional axis drive unit but also those connected to MDS-EM-SPV3.

Substitute the output calculated from (1) of "Calculation of spindle output" and (1) of "Calculation of servo motor output" to the above expression, and calculate the total sum of the spindle rated output and servo motor rated output. According to this, select the unit so that the rated capacity of MDSEM-SPV3 is less than 20kW.

(2) Calculation of required maximum momentary output

Maximum momentary rated capacity of MDS-EM-SPV3 [70kW] ≥ Σ (Spindle maximum momentary output) + Σ (Maximum momentary output of servo motor accelerating/ decelerating simultaneously)

(Note) Calculate the spindle and servo motor maximum momentary output including not only the motor connected to the additional axis drive unit but also those connected to MDS-EM-SPV3.

Substitute the output calculated from (2) of "Calculation of spindle output" and (2) of "Calculation of servo motor output" to the above expression, and calculate the total sum of the "spindle maximum momentary output" and "output of servo motor accelerating/decelerating simultaneously". According to this, select the unit so that the maximum momentary rated capacity of MDS-EM-SPV3 is less than 70kW.

⚠ CAUTION When reducing the time constant replacing the conventional motor with the HG or HG-H Series motor, the motor maximum momentary output may increase more than the conventional motor. Therefore, make sure to check the selection with maximum momentary rated capacity.

5

SELECTION OF THE ADDITIONAL AXIS DRIVE UNIT

accelerating/ decelerating simultaneously + Maximum momentary output of direct drive motor

Required Capacity of Power Supply

For the power supply capacity, calculate the required spindle rated output and servo motor rated output each, and select the power supply capacity satisfying them.

(1) Spindle rated output required for power supply

The spindle rated output required for power supply is calculated from the following expression.

Spindle rated output required for power supply =

MAX (Spindle motor continuous rated output, Spindle motor output at accelerating/decelerating, Spindle motor short-time output)× motor output coefficient γ of combined spindle drive unit

(Note) For the spindle rated output required for the power supply, multiply the largest one of "spindle motor continuous rated output", "spindle motor output at acceleration/deceleration" and "spindle motor shorttime output" by the motor output coefficient γ of the combined spindle drive unit. For the motor output coefficient of the combined spindle drive unit, use the value corresponding to the used spindle drive unit "Motor output coefficient list of additional axis (spindle) drive unit" on (1)-(b) of "Calculation of spindle output"

(2) Servo motor rated output required for power supply

For the servo motor rated output required for power supply, use the value calculated in (1) of "Calculation of servo motor output"

(3) Calculation of rated output required for power supply

Rated capacity required for power supply =

 Σ (Spindle rated output required for power supply) + 0.3 Σ (servo motor rated output required for power supply)

Substitute the output calculated from the item (1) and (2) to the above expression, and calculate the rated capacity required for the power supply.

(4) Calculation of required power supply

Power supply capacity (kVA) = {(Required rated capacity calculated in the item (3)(kW) / Rated capacity of MDS-EM-SPV3 [20kW]) × Power supply capacity base value of MDS-EM-SPV3 [29kVA]}

The rated capacity of MDS-EM-SPV3 is 20kW and power supply capacity base value is 29kVA.

■Example for Additional Axis Drive Unit and Power Supply Facility Capacity

(F		4 \
(⊑xam	pie	1)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG204		2.0kW	8.0kW
Y-axis	HG204	MDS-EM-SPV3-200120	2.0kW	8.0kW
Z-axis	HG354		3.5kW	18kW
MG-axis	HG104	MDS-E-V1-40(Addiction axis)	1.0kW	5.0kW
Spindle	Spindle motor 15kW	MDS-EM-SPV3-200120	15kW	18kW
Total			0.3×(2.0+2.0+3.5+1.0) + 15 = 17.55kW < 20kW (EM-SPV3)	(8.0+8.0+18+5.0) + 18 = 57kW < 70kW (EM-SPV3)

Required power supply capacity (kVA) = (17.55/20)×29 = 25.5 (kVA)

(Example 2)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG104		1.0kW	5.0kW
Y-axis	HG104	MDS-EM-SPV3-10040	1.0kW	5.0kW
Z-axis	HG104		1.0kW	5.0kW
A-axis	HG75		0.75kW	2.6kW
B-axis	HG75	MDS-E-V3-20(Addiction axis)	0.75kW	2.6kW
C-axis	HG75		0.75kW	2.6kW
Spindle (1)	Spindle motor 7.5kW	MDS-EM-SPV3-10040	7.5kW	9.0kW
Spindle (2)	Spindle motor 3.7kW	MDS-E-SP-80	3.7kW	4.44kW
Spindle (3)	Spindle motor 3.7kW	(Addiction axis)	3.7kW	4.44kW
Total			0.3×(1.0×3 + 0.75×3) + (7.5+3.7+3.7)= 16.5kW < 20kW (FM-SPV3)	(5.0×3 + 2.6×3) + (9.0+4.44+4.44)= 40.7kW < 70kW (EM-SPV3)

Required power supply capacity (kVA) = (16.5/20)×29 = 24.0 (kVA)

SELECTION OF THE ADDITIONAL AXIS DRIVE UNIT

DRIVE SYSTEM DEDICATED OPTIONS SERVO OPTIONS

The option units are required depending on the servo system configuration. Check the option units to be required referring the following items.

System establishment in the full closed loop control

Full closed loop control for linear axis

Мас	hine side enco	der to be used	Encoder signal output	Interface unit	Drive unit input signal	Battery option	Remarks
	Rectangular	SR74, SR84 (MAGNESCALE)	Rectangular wave signal	-	Rectangular wave signal	-	
outpu	wave signal output	Various scale	Rectangular wave signal	-	Rectangular wave signal	-	
				IBV Series (HEIDENHAIN)	Rectangular wave signal	-	
		LS187, LS487 (HEIDENHAIN)	SIN wave signal	EIB Series (HEIDENHAIN)	Mitsubishi serial signal	-	
				APE Series (HEIDENHAIN)	Mitsubishi serial signal	-	
Incremental encoder	SIN wave signal output	LS187C, LS487C (HEIDENHAIN)	SIN wave signal	MDS-B-HR-11(P) (MITSUBISHI ELECTRIC) EIB Series (HEIDENHAIN)	Mitsubishi serial signal	(Required) Note 1	Distance-coded reference scale (Note 2)
		Various scale	SIN wave signal	MDS-B-HR-11(P) (MITSUBISHI ELECTRIC) EIB Series (HEIDENHAIN)	Mitsubishi serial signal	(Required) Note 1	Distance-coded reference scale is also available (Note 2)
	Mitsubishi serial signal output	SR75, SR85 (MAGNESCALE)	Mitsubishi serial signal	-	Mitsubishi serial signal	-	
		OSA105ET2A OSA166ET2NA (MITSUBISHI ELECTRIC)	Mitsubishi serial signal	-	Mitsubishi serial signal	Required	Ball screw side encoder
		SR77, SR87 (MAGNESCALE)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
		LC195M, LC495M,LC291M (HEIDENHAIN)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
		LC193M, LC493M (HEIDENHAIN)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
	Mitsubishi serial	AT343, AT543, AT545, ST748 (Mitutoyo)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
Absolute	signal output	SAM Series (FAGOR)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
encoder		SVAM Series (FAGOR)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
		GAM Series (FAGOR)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
		LAM Series (FAGOR)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
		RL40N Series (Renishaw)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
	SIN wave	MPS Series (MME Corp.)	SIN wave signal	ADB-20J60 (Mitsubishi Heavy Industries)	Mitsubishi serial signal		
	signal output	MPI Series (Mitsubishi Heavy Industries)	SIN wave signal	ADS-20J60 (Mitsubishi Heavy Industries)	Mitsubishi serial signal	Required	

(Note 1) When using the distance-coded reference scale, it is recommended to use with distance-coded reference check function. In this case, the battery option is required.

(Note 2) Use the option of M800 Series for the distance-coded reference scale

Full closed loop control for rotary axis

5

DRIVE SYSTEM

105

Machine side encoder to be used		Encoder signal output	Interface unit	Output signal	Battery option	Remarks	
	Rectangular wave signal output	Various scale	Rectangular wave signal	-	Rectangular wave signal	-	
Incremental encoder	SIN wave	ERM280 Series (HEIDENHAIN)	SIN wave signal	EIB Series (HEIDENHAIN)	Mitsubishi serial signal	-	
signal output	signal output	Various scale	SIN wave signal	MDS-B-HR-11(P) (MITSUBISHI ELECTRIC)	Mitsubishi serial signal	(Required) Note 1	Distance-coded reference scale is also available (Note 2)
	MBA405W Series (MITSUBISHI ELECTRIC)	Mitsubishi serial signal	(Provided)	Mitsubishi serial signal	Required		
		RU77 (MAGNESCALE)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
	Mitsubishi	RCN223M, RCN227M (HEIDENHAIN)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
Abaaluta	signal output	RCN727M, RCN827M (HEIDENHAIN)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
position		RA Series (Renishaw)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
SIN		HAM Series (FAGOR)	Mitsubishi serial signal	-	Mitsubishi serial signal	Not required	
	SIN wave	MPRZ Series (Mitsubishi Heavy Industries)	SIN wave signal	ADB-20J71 (Mitsubishi Heavy Industries)	Mitsubishi serial signal	Not required	
	output	MPI Series (Mitsubishi Heavy Industries)	SIN wave signal	ADB-20J60 (Mitsubishi Heavy Industries)	Mitsubishi serial signal	Required	

(Note 1) When using the distance-coded reference scale, it is recommended to use with distance-coded reference check function. In this case, the battery option is required. (Note 2) Use the option of M800 Series for the distance-coded reference scale

System establishment in the synchronous control

Position command synchronous control

The synchronous control is all executed in the NC, and the each servo is controlled as an independent axis. Therefore, preparing special options for the synchronous control is not required on the servo side. Speed command synchronization control

The common position control in two axes is performed by one linear scale. Basically, the multi axis integrated type drive unit (MDS-E/EH-V2) is used, and the feedback signal is divided for two axes inside the drive unit. When the two 1-axis type drive units are used in driving the large capacity servo motor, the linear scale feedback signal must be divided outside.

<Required option in the speed command synchronous control>

Machine side encoder to be used	For MDS-E/EH-V2	For MDS-E/EH-V1×2 units	Remarks
CIN wave signal output cools	MDS-B-HR-11(P)	MDS-B-HR-12(P)	
Silv wave signal output scale	(Serial conversion)	(Serial conversion/signal division)	
			Including the case that an interface unit
Mitsubishi serial signal output scale	-	MDS-B-SD(Signal division)	of the scale manufacturer is used with
			SIN wave output scale.

(Note) The rectangular wave signal output scale speed command synchronous control is not available.

■Dynamic brake unit (MDS-D-DBU)

Specifications

•	
Туре	MDS-D-DBU
Coil specifications	DC24V 160mA
Wire size	5.5mm ² or more (For IV wire)
Compatible drive unit	MDS-E-V1-320W, MDS-EH-V1-160W or larger
Mass	3kg

Outline dimension drawing

MDS-D-DBU

DEDICATED OPTIONS SERVO OPTIONS

[Unit : mm]

■Battery option

This battery option may be required to establish absolute position system. Select a battery option from the table below depending on the servo system.

Ту	ype MDS-BAT6V1SET		MDSBTBOX-LR2060	MR-BAT6V1SET
Installation type		Drive unit with	Unit and battery	Drive unit with
installation typ	e	battery holder type	integration type	battery holder type
Hazard Class		Not applicable	Not applicable	Not applicable
Number of		Lin to 3 aves	Lin to 8 aves	1 avis
connectable ax	kes	00 10 0 8263	00 10 0 8263	1 000
Battery change	e	Possible	Possible	Possible
Appearance				- Built-in battery MR-BAT6V1 Name pate Visional Difference Visional Difference Visional Difference Visional Difference Visional Difference
Compatible	E/EH	0	0	-
model	EM		0	0
EJ/EJH		-	0	0

■Cell battery (MDS-BAT6V1SET)

Specifications

Dettery ention type		Cell battery			
Dattery of	plion type	MDS-BAT6V1SET			
Battery model name		2CR17335A			
Nominal voltage		6V			
Number of connectable axes		Up to 3 axes (Note 3)			
Battery continuous backup time		Up to 2 axes: Approx. 10000 hours			
		3 axes connected: Approx. 6600 hours			
Back up time from battery	warning to alarm	Approx, 168 hours (Note 2)			
occurrence (Note 2)		Applot. Too hours (Note 2)			
	E/EH	0			
Compatible model	EM	_			
	EJ/EJH	-			

(Note 1) MDS-BAT6V1SET is a battery built in a serve drive unit. Install this battery only in the serve drive unit that executes absolute position control.
 (Note 2) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery warning occurs.
 (Note 3) When using ball screw side encoder OSA166ET2NA/OSA105ET2A, both ball screw side encoder and motor side encoder need to be backed up by a battery, so the number of load shaft should be two.

■Battery box (MDSBTBOX-LR2060)

Specifications

Pattory of	ation type	Battery box						
Battery 0	ption type	MDSBTBOX-LR2060						
Battery model name		Size-D alkaline batteries LR20×4 pieces (Note 1)						
		6.0V (Unit output: BTO1/2/3)						
Nominal voltage		3.6V (Unit output: BT(3.6V)						
		1.5V (Isolated battery)						
Number of connectable a	xes	8 axis						
Battery continuous backu	p time	Approx. 10000 hours (when 8 axes are connected, cumulative time in non-energized state) (Note 2)						
Back up time from battery	warning to alarm	Approx, 226 bours (when 8 aves are connected) (Note 2)						
occurrence (Note 2)		Approx. 556 hours (when 6 axes are connected) (Note 2)						
E/EH		0						
Compatible model	EM	0						
	EJ/EJH	0						

(Note 1) Install commercially-available alkaline dry batteries into MDSBTBOX-LR2060. The batteries should be procured by customers. Make sure to use new batteries that have not passed the expiration date. We recommend you to replace the batteries in the one-year cycle. (Note 2) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery warning (9F)

occurs.

■Cell battery (MR-BAT6V1SET)

Specifications

Battory o	ntion type	Cell battery					
Battery 0	ption type	MR-BAT6V1SET (Note 1)					
Battery model name		2CR17335A					
Nominal voltage		6V					
Number of connectable a	ixes	Up to 3 axes (Note 3)					
Pottony continuous book	in time	Up to 2 axes: Approx. 10000 hours					
Ballery continuous backt	ip une	3 axes connected: Approx. 6600 hours					
Back up time from batter	y warning to alarm	Approx, 168 hours (Note 2)					
occurrence (Note 2)		Approx. Too hours (Note 2)					
	E/EH	_					
Compatible model	EM	0					
EJ/EJH		0					
(Note 1) MR-BAT6V1SET is a battery built in a		a servo drive unit. Install this battery only in the servo drive unit that executes absolute position control.					
Note 2) This time is a	quideline so does not	guarantee the back up time. Beplace the battery with a new battery as soon as a battery alarm occurs					

(Note 3) When using ball screw side encoder OSA105ET2A, both ball screw side encoder and motor side encoder need to be backed up by a battery, so the number of load shaft should be two.

DEDICATED OPTIONS SERVO OPTIONS

■Ball screw side encoder OSA105ET2A, OSA166ET2NA

Specifications

-								
	Туре	OSA105ET2A	OSA166ET2NA					
	Encoder resolution	1,000,000pulse/rev	16,000,000pulse/rev					
Electrical	Detection method	Absolute position method (battery backup method)						
characteriotica	Tolerable rotation speed at power off (Note)	500r	/min					
Characteristics	Encoder output data	Seria	data					
	Power consumption	0.3	3A					
Mechanical	Inertia	0.5×10-⁴kg	m ² or less					
iviecnanical	Shaft friction torque	0.1Nm or less						
rotation	Shaft angle acceleration	4×104rad/	s ² or less					
TOLALION	Tolerable continuous rotation speed	4000r/min						
	Shaft amplitude (position 15mm from end)	0.02mm or less						
Machanical	Tolerable load (thrust direction/radial direction)	9.8N/19.6N						
wechanical	Mass	0.6kg						
conliguration	Degree of protection	IP65 (The shaft-throug	h portion is excluded.)					
	Recommended coupling	bellows	coupling					
Compatible model	E/EH	0	0					
	EM	0	-					
	EJ/EJH	0	-					

Outline dimension drawing

OSA105ET2A/OSA166ET2NA

M

[Unit : mm]

Twin-head magnetic encoder (MBA Series)

Specifications

	Туре	MBA405W-BE082	MBA405W-BF125	MBA405W-BG160							
	Encoder resolution		4,000,000 pulse/rev								
	Detection method	Abs	Absolute position method (battery backup method)								
Fleetrical	Tolerable rotation speed at power off	3000r/min	2000r/min	1500r/min							
characteristics	Accuracy (*1) (*2)	±4 seconds	±3 seconds	±2 seconds							
characteristics	Wave number within one rotation	512 waves	768 waves	1024 waves							
	Encoder output data	Serial data									
	Power consumption	0.2A or less									
Mechanical	Inertia	0.5×10 ⁻³ kg ⋅ m ²	8.7×10 ⁻³ kg ⋅ m ²								
characteristics	Tolerable angle acceleration (time of backup)	500rad/s ²									
for rotation	Tolerable continuous rotation speed	3000r/min	2000r/min	1500r/min							
	Drum inner diameter	φ82mm	φ125mm	φ160mm							
Machanical	Drum outer diameter	φ100mm	φ150.3mm	φ200.6mm							
configuration	Drum mass	0.2kg	0.46kg	1.0kg							
	Degree of protection (*3)		IP67								
	Outline dimension	φ140mm×21.5mm	φ190mm×23.5mm	φ242mm×25.5mm							

(*1) The values above are typical values after the calibration with our shipping test device and are not guaranteed.

(*2) The user is requested to install the magnetic drum and installation ring in the encoder within the accuracy range specified herein. Even when the accuracy of the encoder when shipped and when installed by the user is both within the specified range, there is a difference in the installation position. Therefore, the accuracy at the time of our shipment may not be acquired. (*3) It is the degree of protection when fitted with a connector.

Outline dimension drawing

Encoder

DRIVE SYSTEM DEDICATED OPTIONS SPINDLE OPTIONS

According to the spindle control to be adopted, select the spindle side encoder based on the following table.

No-variable speed control (When spindle and motor are directly coupled or coupled with a 1:1 gear ratio)

			•: Control possible ×: Control not possible				
Spindle control item	Control specifications	Without spindle side encoder	With spindle side encoder				
	Normal cutting control	•					
Spindle control	Constant surface speed control (lathe)	•					
	Thread cutting (lathe)	•					
	1-point orientation control	•					
Orientation control	Multi-point orientation control	•	This normally is not used for novariable speed				
	Orientation indexing	•	control.				
	Standard synchronous tap	•					
Synchronous tap control	Synchronous tap after zero point						
	return						
Spindle synchronous	Without phase alignment function	•					
control	With phase alignment function	•					
C-axis control	C-axis control	(Note)					

(Note) When spindle and motor are coupled with a 1:1 gear ratio, use of a spindle side encoder is recommended to assure the precision.

Variable speed control (When using V-belt, or when spindle and motor are connected with a gear ratio other than 1:1) •: Control possible x: Control not possible

		Without opindle oide	With spindle side encoder					
Spindle control item	Control specifications	encoder	TS5690/ERM280/ MPCI/MBE405W Series	OSE-1024	Proximity switch			
	Normal cutting control	•	•	•	•			
Spindle control	Constant surface speed control (lathe)	● (Note 1)	•	•	● (Note 1)			
	Thread cutting (lathe)	×	•	•	×			
	1-point orientation control	×	•	•	 (Note 3) 			
Orientation control	Multi-point orientation control	×	•	•	×			
	Orientation indexing	×	•	•	×			
	Standard synchronous tap	• (Note 2)	•	•	 (Note 2) 			
Synchronous tap control	Synchronous tap after zero point return	×	•	•	×			
Spindle synchronous	Without phase alignment function	• (Note 1)	•	•	 (Note 1) 			
control	With phase alignment function	×	•	•	×			
C-axis control	C-axis control	×	•	x	×			

(Note 1) Control not possible when connected with the V-belt. (Note 2) Control not possible when connected with other than the gears.

(Note 3) When using a proximity switch, an orientation is executed after the spindle is stopped. As for 2-axis spindle drive unit, setting is available only for one of the axes.

Cautions for connecting the spindle end with an OSE-1024 encoder

[1] Confirm that the gear ratio (pulley ratio) of the spindle end to the encoder is 1:1. [2] Use a timing belt when connecting by a belt.

5

DEDICATED OPTIONS SPINDLE OPTIONS

Spindle side ABZ pulse output encoder (OSE-1024 Series)

When a spindle and motor are connected with a V-belt, or connected with a gear ratio other than 1:1, use this spindle side encoder to detect the position and speed of the spindle. Also use this encoder when orientation control and synchronous tap control, etc are executed under the above conditions.

Specifications

	Туре	OSE-1024-3-15-68	OSE-1024-3-15-68-8		
Machanical	Inertia	0.1×10 ⁻⁴ kgm ² or less	0.1×10 ⁻⁴ kgm ² or less		
charactoristics for	Shaft friction torque	0.98Nm or less	0.98Nm or less		
rotation	Shaft angle acceleration	10 ⁴ rad/s ² or less	10 ⁴ rad/s ² or less		
Totation	Tolerable continuous rotation speed	6000r/min	8000r/min		
	Bearing maximum non-lubrication	20000b/6000r/min	20000b/8000r/min		
	time	200001/00001/11111	200001/00000//1111		
	Shaft amplitude	0.02mm or less	0.02mm or less		
	(position 15mm from end)		0.0211111 01 1000		
Mechanical	Tolerable load	10kg/20kg Half of value during operation	10kg/20kg Half of value during operation		
configuration	(thrust direction/radial direction)	Toky/20kg Hail of value during operation	rong/zong rian of value during operation		
	Mass	1.5kg	1.5kg		
	Degree of protection	IP	54		
	Squareness of flange to shaft	0.05mm	n or less		
	Flange matching eccentricity	0.05mm	n or less		
	E/EH	0	0		
Compatible model	EM	0	0		
	EJ/EJH	0	0		

(Note) Confirm that the gear ratio (pulley ratio) of the spindle end to the encoder is 1:1.

Outline dimension drawing

Spindle side encoder (OSE-1024-3-15-68, OSE-1024-3-15-68-8)

[Unit : mm]

■Spindle side PLG serial output encoder (TS5690, MU1606 Series)

This encoder is used when a more accurate synchronous tapping control or C-axis control than OSE encoder is performed to the spindle which is not directly-connected to the spindle motor.

Specifications

<u> </u>												
	Serie	es type					TS5690	N64xx				
	xx(The end	Standard connector	12	22	32	42	52	17	27	37	47	57
Sensor	name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58
	Length of lea	ad [mm]	400±10	800±20	1200±20	1600±30	2000±30	400±10	800±20	1200±20	1600±30	2000±30
	Lead wire lea	ad-out direction		V	ertical direction	on				Shaft directior	ı	
	Туре			MU1606N601								
Detection	The number	of teeth		64								
Detection	Outer diame	eter [mm]	ф52.8									
gear	Inner diame	ter [mm]		φ40H5								
	Thickness	[mm]					1	2				
Notched	Outer diame	eter [mm]					φ59	9.4				
fitting section	Outer diame tolerance	eter [mm]					+0.030 te	o +0.070				
The number	A/B phase						6	4				
pulse	Z phase						1	I				
Detection re	esolution	[p/rev]					2 mi	llion				
Absolute ac	curacy at sto	р	150"									
Tolerable sp	beed	[r/min] 40,000										
Signal outp	ut		Mitsubishi high-speed serial									
Compatible	E/EH			0								
model	EM						C)				
model	EJ/EJH						C					

	Serie	es type		TS5690N90xx									
	xx(The end	Standard connector	12	22	32	42	52	17	27	37	47	57	
Sensor	name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58	
	Length of lea	ad [mm]	400±10	400±10 800±20 1200±20 1600±30 2000±30 400±10 800±20 1200±20 1600±30									
	Lead wire lea	ad-out direction		V	ertical direction	on				Shaft direction	า		
	Type MU1606N906							06N906					
Dotoction	The number	of teeth					9	90					
Delection	Outer diame	eter [mm]					φ7	3.6					
year	gear Inner diameter [mm]			ф50H5									
	Thickness	[mm]					1	2					
Notched	Outer diame	eter [mm]		φ79.2									
fitting section	Outer diame tolerance	eter [mm]		+0.040 to +0.0									
The number	A/B phase			90									
pulse	Z phase			1									
Detection re	esolution	[p/rev]		2,880,000									
Absolute ad	curacy at sto	р					10)5"					
Tolerable s	peed	[r/min]	30,000										
Signal outp	Signal output			Mitsubishi high-speed serial									
Compatible	E/EH						(CC					
model	EM						(C					
model	EJ/EJH						(CC					

	Serie	es type		T\$5690N12xx									
	xx(The end	Standard connector	12	22	32	42	52	17	27	37	47	57	
Sensor	name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58	
	Length of lea	ad [mm]	400±10	800±20	1200±20	1600±30	2000±30	400±10	800±20	1200±20	1600±30	2000±30	
	Lead wire lea	ad-out direction		V	ertical direction	on				Shaft directior	ı		
	Туре			MU1606N709									
Dotoction	The number	of teeth	th 128										
Delection	Outer diameter [mm]												
year	Inner diame	ter [mm]		ф80H5									
	Thickness	[mm]					1	2					
Notched	Outer diame	eter [mm]					φ10	8.8					
fitting section	Outer diame tolerance	eter [mm]	+0.015 to +0.025										
The number	A/B phase						12	28					
pulse	Z phase							1					
Detection re	esolution	[p/rev]			4 million								
Absolute ad	curacy at sto	р					10	00"					
Tolerable s	peed	[r/min]	20,000										
Signal outp	ut		Mitsubishi high-speed serial										
Compatible	Compatible E/EH			0									
model	EM						()					
mousi	EJ/EJH			-		-	()					

DEDICATED OPTIONS SPINDLE OPTIONS

	Serie	es type					TS5690	N19xx				
	xx(The end	Standard connector	12	22	32	42	52	17	27	37	47	57
Sensor	name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58
	Length of lea	ıd [mm]	400±10	800±20	1200±20	1600±30	2000±30	400±10	800±20	1200±20	1600±30	2000±30
	Lead wire lea	ad-out direction		Vertical direction Shaft direction								
	Туре						MU160	6N203				
Detection	The number	of teeth					19	92				
Detection	Outer diameter [mm]											
gear	Inner diame	ter [mm]		ф125H5								
	Thickness	[mm]					1	2				
Notched	Outer diame	ter [mm]					φ15	8.4				
fitting section	Outer diame tolerance	ter [mm]					+0.040	to +0.0				
The number	A/B phase						19	92				
pulse	Z phase						1	I				
Detection re	esolution	[p/rev]					6 mi	llion				
Absolute ad	curacy at sto	b		97.5"								
Tolerable s	beed	[r/min]		15,000								
Signal outp	ut						Mitsubishi hig	h-speed seria				
Compatible	E/EH						()				
model	EM						()				
model	EJ/EJH						()				

	Serie	s type	TS5690N25xx										
	xx(The end	Standard connector	12	22	32	42	52	17	27	37	47	57	
Sensor	name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58	
	Length of lead [mm]		400±10	800±20	1200±20	1600±30	2000±30	400±10	800±20	1200±20	1600±30	2000±30	
	Lead wire lea	d-out direction		Vertical direction Shaft direction									
	Туре			MU1606N802									
Detection	The number	of teeth		256									
Detection	Outer diame	ter [mm]					φ 2 0	6.4					
year	Inner diamet	er [mm]		φ140H5									
	Thickness	[mm]					15	.8					
Notched	Outer diame	ter [mm]					φ 2 1	0.2					
fitting section	Outer diame tolerance	ter [mm]					+0.0 to	+0.040					
The number	A/B phase			256									
pulse	Z phase						1	l					
Detection re	esolution	[p/rev]					8 mi	llion					
Absolute ac	curacy at stop)					95	5"					
Tolerable sp	uble speed [r/min] 10,000												
Signal output	ut		Mitsubishi high-speed serial										
Compatible	E/EH						C)					
model	EM						C)					
model	EJ/EJH						C)					

Outline dimension drawing

Lead wire lead-out direction: Vertical direction

Lead wire lead-out direction: Shaft direction

DEDICATED OPTIONS SPINDLE OPTIONS

[Unit : mm]

Twin-head magnetic encoder (MBE Series)

Specifications

	Туре	MBE405W-BE082	MBE405W-BF125	MBE405W-BG160					
	Encoder resolution		4,000,000 pulse/rev						
	Detection method		Incremental						
Electrical	Accuracy (*1) (*2)	±4 seconds	±3 seconds	±2 seconds					
characteristics	Wave number within one rotation	512 waves	768 waves	1024 waves					
	Encoder output data	Serial data							
	Power consumption	0.2A or less							
Mechanical	Inertia	0.5×10 ⁻³ kg ⋅ m ²	2.4×10 ⁻³ kg · m ²	8.7×10 ⁻³ kg ⋅ m ²					
characteristics for rotation	Tolerable continuous rotation speed	15000r/min	10000r/min	8000r/min					
	Drum inner diameter	φ82mm	φ125mm	φ160mm					
Machanical	Drum outer diameter	φ100mm	φ150.3mm	φ200.6mm					
wechanical	Drum mass	0.2kg	0.46kg	1.0kg					
comguration	Degree of protection (*3)		IP67						
	Outline dimension	¢140mm×21.5mm		φ242mm×25.5mm					

(*1) The values above are typical values after the calibration with our shipping test device and are not guaranteed.

(*2) The user is requested to install the magnetic drum and installation ring in the encoder within the accuracy range specified herein. Even when the accuracy of the encoder when shipped and when installed by the user is both within the specified range, there is a difference in the installation position. Therefore, the accuracy at the time of our shipment may not be acquired.

(*3) It is the degree of protection when fitted with a connector.

Outline dimension drawing

Spindle side accuracy serial output encoder (ERM280, MPCI Series)

C-axis control encoder is used in order to perform an accurate C-axis control.

Manufacturer		HEIDE	Mitsubishi Heavy Industries		
Encoder type		ERM280 1200	ERM280 2048	MPCI Series	
Interface with the sec		EIB192M C4 1200	EIB192M C6 2048		
interface unit type		EIB392M C4 1200	EIB392M C6 2048 ADB-20020 0.0000107° 0.00005°		
Minimum data di su sa alution		0.0000183°	0.0000107°	0.00005°	
	esolution	(19,660,800p/rev)	(33,554,432p/rev)	(7,200,000p/rev)	
Tolerable maximum	speed	20000r/min	11718r/min	10000r/min	
	E/EH	(0		
Compatible model	EM	(0		
	EJ/EJH	()	0	

DRIVE SYSTEM DETECTOR INTERFACE UNIT

■Serial output interface unit for ABZ analog encoder MDS-B-HR

This unit superimposes the scale analog output raw waves, and generates high resolution position data. Increasing the encoder resolution is effective for the servo high-gain. MDS-B-HR-12 (P) is used for the synchronous control system that 1-scale 2-drive operation is possible.

Specifications

Тур	e	MDS-B-HR-11	MDS-B-HR-12	MDS-B-HR-11P	MDS-B-HR-12P			
Compatible scale (exam	ple)		LS186 / LS486/LS186C / LS486C (HEIDENHAIN)					
Signal 2-division function	ı	×	0	×	0			
Analog signal input spec	ifications		A-phase, B-phase, Z-pl	hase (Amplitude 1Vp-p)				
Compatible frequency			Analog raw wave	orm max. 200kHz				
Scale resolution		Analog raw waveform/512 division						
Input/output communicat	tion style	High-speed serial communication I/F, RS485 or equivalent						
Tolerable power voltage			DC5\	/±5%				
Maximum heating value			2'	W				
Mass		0.5kg or less						
Degree of protection		IP	65	IP67				
	E/EH	0	0	0	0			
Compatible model	EM	0	-	0	-			
	EJ/EJH	0	0	Ö	0			

Outline dimension drawing

■Serial signal division unit MDS-B-SD

This unit has a function to divide the position and speed signals fed back from the high-speed serial encoder and highspeed serial linear scale. This unit is used to carry out synchronized control of the motor with two MDS-E/EH-V1 drive units.

Specifications

Тур	e	MDS-B-SD		
Compatible servo drive u	init	MDS-E/EH-V1-		
Input/output communication style		High-speed serial communication I/F, RS485 or equivalent		
Tolerable power voltage		DC5V±10%		
Maximum heating value		4W		
Mass		0.5kg or less		
Degree of protection		IP20		
	E/EH	0		
Compatible model	EM			
	EJ/EJH	0		

DETECTOR INTERFACE UNIT

Serial output interface unit for ABZ analog encoder EIB192M (Other manufacturer's product)

Specifications

opeenneanene						
Тур	e	EIB192M A4 20µm	EIB192M C4 1200	EIB192M C4 2048		
Manufacturer			HEIDENHAIN			
Input signal			A-phase, B-phase: SIN wave 1Vpp, Z-phase	e		
Maximum input frequency	y		400kHz			
Output signal		M	litsubishi high-speed serial signal (MITSU02	-4)		
Interpolation division num	nber	Maximum 16384 divisions				
Compatible encoder	Compatible encoder LS187, LS487 ERM280 1200 ERM280					
Minimum data di su na altati su		0.0012	0.0000183°	0.0000107°		
Minimum detection resolu	1001	0.0012µm	(19,660,800p/rev)	(33,554,432p/rev)		
Degree of protection			IP65			
Outline dimension			98mm×64mm×38.5mm			
Mass		300g				
Compatible model	E/EH	0	0	0		
	EM	0	0	Ō		
	EJ/EJH	0	0	Ó		

Serial output interface unit for ABZ analog encoder EIB392M (Other manufacturer's product) Specifications

Туре		EIB392M A4 20µm EIB392M C4 1200 EIB392M C4 2048					
Manufacturer			HEIDENHAIN				
Input signal		A	A-phase, B-phase: SIN wave 1Vpp, Z-phase	e			
Maximum input frequency			400kHz				
Output signal		Mi	tsubishi high-speed serial signal(MITSU02-	-4)			
Interpolation division numb	er	Maximum 16384 divisions					
Compatible encoder LS187, LS487 ERM280 1200			ERM280 1200	ERM280 2048			
Minimum data di un una dution		0.0012	0.0000183°	0.0000107°			
Winning detection resolution	ION	0.0012μΠ	(19,660,800p/rev)	(33,554,432p/rev)			
Degree of protection			IP40				
Outline dimension			76.5mm×43mm×16.6mm				
Mass			140g				
Compatible model	E/EH	0	0	0			
	EM	0	0	0			
	EJ/EJH	0	0	0			

Serial output interface unit for ABZ analog encoder ADB-20J Series (Other manufacturer's product)

Specifications

Туре		ADB-20J20	ADB-20J60		ADB-20J71		
Manufacturer		Mitsubishi Heavy Industries					
Maximum response speed		10,000r/min	3,600m/min 5,000r/min		10,000r/min		
Output signal			Mitsubishi high-sp	peed serial signal			
Compatible encoder		MPCI series	MPS series	MPI series	MPRZ series		
Minimum detection resolution		0.00005°	0.05um	0.000025°	0.000043°		
		(7,200,000p/rev)		(1,440,000p/rev)	(8,388,608p/rev)		
Degree of protection		IP20					
Outline dimension			190mm×160mm×40mm				
Mass		0.9kg					
Compatible model	E/EH	0	0	0	0		
	EM	0	0	0	0		
	EJ/EJH	Ó	Ó	Ó	Ó		

DRIVE SYSTEM DEDICATED OPTIONS DRIVE UNIT OPTION

■DC connection bar

When connecting a large capacity drive unit with L+L- terminal of power supply unit, DC connection bar is required. In use of the following large capacity drive units, use a dedicated DC connection bar. The DC connection bar to be used depends on the connected power supply, so make a selection according to the following table.

Specifications

	Series	MDS-E		MDS-EH			
Large capacity drive unit		MDS-E-SP-400 MDS-E-SP-640	MDS-EH-SP-200 MDS-EH-SP-320 MDS-EH-SP-480	MDS-EH-V1-200 MDS-EH-SP-200 MDS-EH-SP-320	MDS-EH-V1-200		
Power supply unit M		MDS-E-CV-550	MDS-EH-CV-550 MDS-EH-CV-750	MDS-E-CV-300 MDS-E-CV-370 MDS-E-CV-450	MDS-EH-CV-185		
Required connection bar		E-BAR-A0606 (Two-parts set)	E-BAR-A0606 (Two-parts set)	DH-BAR-B0606	DH-BAR-C0606		
Competible	E/EH	0	0	0	0		
Compatible	EM	-	-	-	-		
model	EJ/EJH	-	-	-	-		

■Side protection cover(E-COVER-1/E-COVER-2)

Install the side protection cover outside the both ends of the connected units.

DEDICATED OPTIONS DRIVE UNIT OPTION

■Regenerative option

Confirm the regeneration resistor capacity and possibility of connecting with the drive unit. The regenerative resistor generates heats, so wire and install the unit while taking care to safety. When using the regenerative resistor, make sure that flammable matters, such as cables, do not contact the resistor, and provide a cover on the machine so that dust or oil does not accumulate on the resistor and ignite.

Combination with servo drive unit

Corresponding	Standard built-in		External option regenerative resistor						
servo drive unit	regenerative r	esistor	MR-RB032	MR-RB12	MR-RB32	MR-RB30	MR-RB50	MR-RB31	MR-RB51
	Mass		0.5kg	1.1kg	2.9kg	2.9kg	5.6kg	2.9kg	5.6kg
			168mm×	168mm×	150mm×	150mm×	350mm×	150mm×	350mm×
	Linit outling dim	anaian	30mm×	40mm×	100mm×	100mm×	128mm×	100mm×	128mm×
	Unit outline dimension		119mm	149mm	318mm	318mm	200mm	318mm	200mm
			W1	W2	W3	W3	W4	W3	W4
	External option regenerative resistor		-	GZG200W 39OHMK	GZG200W120 OHMK ×3	GZG200W39 OHMK ×3	GZG300W39 OHMK ×3	GZG200W20 OHMK ×3	GZG300W20 OHMK ×3
			30W	100W	300W	300W	500W	300W	500W
	capacity	Resistance value	40Ω	40Ω	40Ω	13Ω	13Ω	6.7Ω	6.7Ω
MDS-EJ-V1-10	10W	100Ω	0	0					
MDS-EJ-V1-15	10W	100Ω	0	0					
MDS-EJ-V1-30	20W	40Ω	0	0	0				
MDS-EJ-V1-40	100W	13Ω				0	0		
MDS-EJ-V1-80	100W	9Ω						0	0
MDS-EJ-V1-100	100W	9Ω						0	0

Corresponding	Standard built-in regenerative resistor			External option regenerative resistor				
servo drive unit			MR-RB1H-4	MR-RB3M-4	MR-RB3G-4	MR-RB5G-4 (Note 1)		
	Mass		1.1kg	2.9kg	2.9kg	5.6kg		
	Unit outline dimension		168mm×40mm×149mm	150mm×100mm×318mm	150mm×100mm×318mm	350mm×128mm×200mm		
			W2	W3	W3	W4		
	Bogoporativo		100W	300W	300W	500W		
	capacity	Resistance value	82Ω	120Ω	47Ω	47Ω		
1DS-EJH-V1-10	20W	80Ω	0	0	-	-		
IDS-EJH-V1-15	20W	80Ω	0	0	-	-		
IDS-EJH-V1-20	100W	40Ω	_	-	Ó	Ó		
1DS-EJH-V1-40	120W	47Ω	_	-	0	0		

(Note 1) Install a cooling fan in the unit.

Combination with spindle drive unit

The regenerative resistor is not incorporated in the spindle drive unit. Make sure to install the external option regenerative resistor.

Corresponding		External option regenerative resistor						
spindle drive unit		MR-RB12	MR-RB32	MR-RB30	MR-RB50			
	Mass	0.8kg	2.9kg	2.9kg	5.6kg			
	Linit eutline dimension	168mm×40mm×149mm	150mm×100mm×318mm	150mm×100mm×318mm	350mm×128mm×200mm			
	Unit outline dimension	W2	W3	W3	W4			
	External option	CZC200W/20OHMK	GZG200W120	GZG200W39	GZG300W39			
	regenerative resistor	GZG200W39OHIVIK	OHMK×3	OHMK×3	OHMK×3			
	Regenerative capacity	100W	300W	300W	500W			
	Resistance value	40Ω	40Ω	13Ω	13Ω			
MDS-EJ-SP-20	10W	0	0					
MDS-EJ-SP-40	10W			0	0			
MDS-EJ-SP-80	20W			0	0			
MDS-EJ-SP-100	100W			0	0			
MDS-EJ-SP-120	100W				0			
MDS-EJ-SP-160	100W							

Corresponding			External option regenerative resistor					
spindle drive unit		FCUA-RB22	FCUA-RB37	FCUA-RB55	FCUA-RB75/2 (1 unit)			
	Mass	0.8kg	1.2kg	2.2kg	2.2kg			
	Linit outling dimension	30mm×60mm×215mm	30mm×60mm×335mm	40mm×80mm×400mm	40mm×80mm×400mm			
		W5	W5	W6	W6			
	Regenerative capacity	155W	185W	340W	340W			
	Resistance value	40Ω	25Ω	20Ω	30Ω			
MDS-EJ-SP-20	-	0	0					
MDS-EJ-SP-40	-	0	0	0	0			
MDS-EJ-SP-80	-		0	0	0			
MDS-EJ-SP-100	-			0				
MDS-EJ-SP-120	-							
MDS-EJ-SP-160	-							

				External of	ption regenerativ	/e resistor		
Corresponding spindle drive unit		R-UNIT1	R-UNIT2	R-UNIT3	R-UNIT4	R-UNIT5	FCUA-RB55 2 units connected in parallel	FCUA-RB75/2 2 units connected in parallel
	Mass	4.3kg	4.4kg	10.8kg	11.0kg	15.0kg	4.4kg	4.4kg
		355mm×	355mm×	375mm×	375mm×	375mm×	40mm×	40mm×
	Linit outling dimonsion	105mm×	105mm×	276mm×	276mm×	276mm×	80mm×	80mm×
		114mm	114mm	104mm	104mm	160mm	400mm	400mm
		W7	W7	W8	W8	W9	W6	W6
	Regenerative capacity	700W	700W	2100W	2100W	3100W	680W	680W
	Resistance value	30Ω	15Ω	15Ω	10Ω	10Ω	10Ω	15Ω
MDS-EJ-SP-20	-							
MDS-EJ-SP-40	-	0	0	0				0
MDS-EJ-SP-80	-	0	0	0	0	0	0	0
MDS-EJ-SP-100	-		0	0	0	0	0	0
MDS-EJ-SP-120	-		0	0	0	0	0	0
MDS-EJ-SP-160	-				0	0		

DEDICATED OPTIONS DRIVE UNIT OPTION

External option regenerative resistor

W1 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 uuu ഫ് 119 30

W3

W4

149

W2

_∩¶⊒ 40

20/24

168

W8

2 - 500

m

W9

• ...

■Power backup unit MDS-D/DH-PFU

Use this unit to protect machines or drive units at power failure. Specifications

Power	backup unit typ	е	MDS-DH-PFU	MDS-D-PFU
	Rated voltage	[V]	380 to 480AC (50/60Hz) (Exclusively for earthed-star supply system) Tolerable fluctuation : between +10% and -10%	200 to 230AC (50/60Hz) Tolerable fluctuation : between +10% and -15%
AC Input	Frequency	[Hz]	50/60 Tolerable fluctuation	n : between +3% and -3%
	Rated current	[A]	2	4
DC loout/	Rated voltage	[V]	513 to 648DC	270 to 311DC
Output	Rated current	[A]	Regenerative input: MAX 200A Power running output: MAX 160A	Regenerative input: MAX 300A Power running output: MAX 200A
	Voltage	[V]	Single-phase 200 to 230VAC (50Hz or 60Hz) 50Hz at backup	Single-phase 380 to 480VAC (50Hz or 60Hz) 50Hz at backup
	Current	[A]	MAX 2	MAX 4
AC output for	Maximum number of drive un	its to connect	6 units (except for th	e power supply unit)
backup	Switching time		Within 100ms after AC input	t instantaneous interruption
	Minimum backup	time	75ms or more (380VAC input, at maximum number of drive units to connect)	75ms or more (200VAC input, at maximum number of drive units to connect)
Degree of prote	ction		IP20 [except for the termina	I block and connector area]
Cooling method	i		Natural	-cooling
Mass		[ka]		1

Outline dimension drawing

■Regenerative resistor unit for power backup unit R-UNIT-6, R-UNIT-7

Specifications		
Regenerative resistor type	R-UNIT-6	R-UNIT-7
Corresponding power backup unit type	MDS-DH-PFU	MDS-D-PFU
Resistance value [Ω]	5	1.4
Instantaneous regeneration capacity [kW]	128	114
Tolerable regeneration work amount [kJ]	180	180
Cooling method	Natural-cooling	Natural-cooling
Mass [kg]	10	10

Outline dimension drawing

DEDICATED OPTIONS DRIVE UNIT OPTION

[Unit : mm]

■Capacitor unit MDS-D/DH-CU

Specifications

Capacito	or unit type	MDS-DH-CU	MDS-D-CU
Compatible capacito	or unit type	MDS-DH-PFU	MDS-D-PFU
Capacity [µF]		7000	28000
DC Input/Output	Rated voltage [V]	513 to 648DC	270 to 311DC
Cooling method		Natural-cooling	Natural-cooling
Mass	[kg]	11	11

Outline dimension drawing

[Unit : mm]

5 DRIVE SYSTEM

DRIVE SYSTEM SELECTION OF CABLES

■MDS-E Series Power Cable and Brake Cable for Servo Motor Selection List

		Drive u	nit type		Power Cable			Brake cable			
Serv	o motor type	MD	S-E-	Drive unit	Moto	r side	Drive unit	Moto	r side		
		V1	V2	side	Straight	Right angle	side	Straight	Right angle		
	HG123	20	20 40		CNP18 101 (14)	CNIP18 101 (14)					
	HG142	20	20		Applicable cable	Applicable cable					
	HG54				outline	outline					
	HG104]			φ10.5 to 14 (mm)	φ10.5 to 14 (mm)					
	HG223	40 40		- All aves							
	HG302	0	80	CNU01SEF (AWG14) - L-axis only	CNP22-22S (16) Applicable cable outline \$\overline\$12.5 to 16 (mm)	CNP22-22L (16) Applicable cable outline \$\phi12.5 to 16 (mm)					
HG	HG154			CNU01SEL (AWG14)	CNP18-10S (14) Applicable cable outline	CNP18-10L (14)	CNU23S	CNB10-R2S (6) Applicable cable	CNB10-R2L (6) Applicable cable		
Series	HG224	80	80	- M-axis only	φ10.5 to 14 (mm)	φ10.5 to 14 (mm)	(AWG14)	outline	outline		
	HG204		160	(AWG14)				CNB10-R2S (6) Applicable cable outline \$4.0 to 6.0 (mm) CNB10-R2L (6) Applicable cable outline \$4.0 to 6.0 (mm)	φ4.0 to 6.0 (mm)		
	HG303]		- S-axis only	CNP22-225 (16)	CNP22-221 (16)					
	HG354	100	100	CNU01SES	Applicable cable	Applicable cable					
	HG453	160	160	(AVVG14)	outline	outline					
	HG354		10014		φ12.5 to 16 (mm)	φ12.5 to 16 (mm)					
	HG453	1 -	16000						10-R2S (6) CNB10-R2L (6) sable cable outline o 6.0 (mm) φ4.0 to 6.0 (mm)		
	HG703	160W	160W		CNP32-17S (23)	CNP32-17L (23)					
	HG903	HG903 320 —			φ22 to 23.8 (mm)	φ22 to 23.8 (mm)					

■MDS-E Series Detector Cable and Connector for Servo Motor Selection List

							Serv	o detector o	cable			
					Motor s	side detecto	or cable			Ball screw s	ide detector	r
Serve	o motor	Drive u	nit type	Ca	ble	Sir	ngle connec	tor	Ball so	rew side dete OSA166	ector (OSA10 ET2NA)	5ET2A/
t	уре	NID;	5-E-	(101 D46/	D51/D74)	Drive unit	Moto	r side	Ca	ble	Single co	onnector
		V1	V2	Straight Right angle		side	Straight	Right angle	Straight	Right angle	Straight	Right angle
	HG123	20	20 40									
	HG142	20	20	1								
	HG54 HG104			1								
		40	40				CNE10-R10S (9) CNE10-R10L (9) CNV Applicable Applicable I : 1 a cable outline cable outline 2, 3					
	HG223	40	80									
	HG302			□ : Length (m)	□ : Lenath (m)		Applicable	Applicable	□ : Length (m)	□ : Length (m)	Applicable	Applicable
HG	HG154			2, 3, 4, 5, 7,	2, 3, 4, 5, 7,	(AWG18)	cable outline	cable outline	2, 3, 4, 5, 7,	2, 3, 4, 5, 7,	cable outline	cable outline
00103	HG224		80	10, 15, 20,	10, 15, 20,		φ6.0 to 9.0	φ6.0 to 9.0	10, 15, 20,	10, 15, 20,	φ6.0 to 9.0	φ6.0 to 9.0
	HG204	00	160	25, 30	25, 30		(mm)	(mm)	25,30	25, 30	(mm)	(mm)
	HG204 HG303 HG354 HG453 HG703	1										
		100	160]								
		100	160W									
		160W	160W]								
	HG903	320	_]								

■MDS-E Series Power Cable for Spindle Motor Selection List

Spinols model type SP SP2 SJ-DS Bries (Normal) SJ-DS.5/120-01 80 80 16080 (J) SJ-DS.5/120-01 160 SJ-DS.5/120-01 1600 16080 (L) SJ-DS.5/120-01 160 SJ-DS.5/120-01 160 16080 (L) SJ-DS.5/120-01 160 16080 (L) SJ-DS.5/120-02T-S 160 200 16080 (L) SJ-DS.5/120-02T-S 160 - SJ-DS.5/120-02T-S 160 - SJ-DS.5/120-02T-S 160 - SJ-DS.5/120-02T-S 160 - SJ-DS.5/120-01 80 80 16080 (M) SJ-DJ.5/100-01 80 80 16080 (M) SJ-DJ.5/100-01 80 80 16080 (L) SJ-DJ.5/100-01 80 80 16080 (L) SJ-DJ.5/100-01 20 20 SJ-DJ.5/100-01 20 20 SJ-DJ.5/100-01 80 80 16080 (L) SJ-DJ.5/100-01 40 40 SJ-DJ.5/100-01 80 10080 (L) SJ-DJ.5/100-01 9 90 SJ-D	Snindle	motor type	Drive	unit type	
SJ-D Series (Normal) SJ-D5.5/120-01 80 (16080 (M) SJ-D Series (Normal) SJ-D5.5/120-02 160 200 16080 (L) SJ-D Series (Hollow shaft) SJ-D5.5/120-02 160 200 16080 (L) SJ-D Series (Hollow shaft) SJ-D5.5/120-021 160 16080 (L) SJ-D Series (Hollow shaft) SJ-D6.5/120-021-S 160 - SJ-D Series (High output) SJ-D6.5/120-04T 160 - SJ-DG Series (Compace & lightweight) SJ-D6.5/120-04T 80 80 16080 (M) SJ-DJ Sr/20-021 80 80 16080 (M) - SJ-DJ Sr/20-011 80 80 16080 (M) - SJ-DJ Sr/20-011 80 80 16080 (M) - SJ-DJ Sr/20-011 80 80 16080 (M) - SJ-DL Sr/20-011 80 16080 (L) - SJ-DL Sr/20-011 160 16080 (L) -<	Spiride		SP	SP2	
SJ-DD.5/100-01 SJ-D5.5/120-02 80 16080 (M) SJ-D5.5/120-02 160 200 16080 (L) SJ-D5.5/120-01 SJ-D7.5/100-01 SJ-D7.5/120-01 SJ-D5.5/120-02T-S 1600 16080 (L) SJ-D5.5/120-02T-S 1600 16080 (L) SJ-D5.5/120-02T-S 1600 16080 (L) SJ-D5.5/120-02T-S 1600 - SJ-D5.5/120-02T-S 80 80 16080 (M) SJ-D5.5/120-01 80 80 16080 (M) SJ-D1.5/120-01 80 90 16080 (M) SJ-D1.5/120-01 160 16080 (L) SJ-D1.5/120-01 160 16080 (L) SJ-D1.5/120-01 160 16080 (L) SJ-D1.5/100-01 20 20 SJ-D1.5/100-01 40 40 (Low-ineria) SJ-D1.5/100-01 16008 (L) SJ-D1.5/100-01 40 40 SJ-D1.5/100		SJ-D3.7/100-01		0.2	
SJ-D Series (Noma) SJ-D5.5/120-01 16080 (M) SJ-D5.5/120-02 200 16080 (L) SJ-D5.5/120-01 1600 16080 (L) SJ-D5.5/120-01 1600 16080 (L) SJ-D5.5/120-01 1600 16080 (L) SJ-D5.5/120-01 160 - SJ-D6.5/120-01 1600 - SJ-D5.5/120-01 80 80 SJ-D5.5/120-01 80 80 SJ-D5.5/120-01 80 16080 (M) SJ-D5.5/120-01 80 80 SJ-D5.5/120-01 80 16080 (M) SJ-D5.5/120-01 80 16080 (M) SJ-D5.5/120-01 80 16080 (L) SJ-D1.5/100-01 200 - SJ-D1.5/100-01 200 - SJ-D1.5/100-01 20 20 SJ-D1.5/100-01 20 20 SJ-D1.5/100-01 40 40 SJ-D1.5/100-01 20 - SJ-D1.5/100-01 20 - SJ-D1.5/200-01TS		S I D5 5/100 01		80	
SJ-D. Series (Normal) SJ-D.5.7120-01 SJ-D7.57120-01 SJ-D7.57120-01 SJ-D7.57120-01 SJ-D7.57120-01 SJ-D6.57120-02TS 160 200 16080 (L) SJ-D Series (Holow shaft) SJ-D6.5.7120-02TS 160 200 16080 (L) SJ-D6 Series (High output) SJ-D65.57120-02TS 160 200 - SJ-D65.57120-02TS 160 200 - - SJ-D65.57120-05T 200 - - SJ-D65.57120-05T 200 - - SJ-D65.57120-05T 200 - - SJ-D5.57120-05T 80 80 16080 (M) - SJ-D15.57120-01 80 90 16080 (M) - SJ-D15.57120-01 160 16080 (L) - SJ-D15.57120-01T 160 16080 (L) - SJ-D15.5720-01T 160 16080 (L) - SJ-D15.5720-01T 160 16080 (L) - <		01 D5 5/100 01		16080 (M)	
(Normal) SJ-D5.5/120-02 SJ-D7.5/120-01 SJ-D7.5/120-01 SJ-D1.7/100-01 160 16080 (L) SJ-D Series (holkov sharth) SJ-D6.5/120-02T-S SJ-DG Series SJ-DG Series (SJ-DG Series (High output) SJ-DG3.7/120-03T SJ-DG Series SJ-DG5.5/120-04T SJ-DG7.5/120-05T 160 	SJ-D Series	SJ-D5.5/120-01			
SJ-DJ.Sr/100-01 SJ-DJ.Sr/100-01 160 16080 (L) SJ-D Series (Hollow shaft) SJ-D6.5/120-02T-S 200 16080 (L) SJ-DG Series (High output) SJ-D65.5/120-04T 160 SJ-DG Series (High output) SJ-D65.5/120-04T 160 SJ-DJ Series (Compact & iightweight) SJ-DJ5.5/100-01 80 80 16080 (M) SJ-DJ Series (Compact & iightweight) SJ-DJ5.5/100-01 80 80 16080 (M) SJ-DJ Series (Compact & iightweight) SJ-DJ5.5/100-01 200 SJ-DJ Series (Compact & iightweight) SJ-DJ5.5/100-01 200 SJ-DJ Series (Low-inertia) SJ-DJ5.5/100-01 200 SJ-DL Series (Hollow shaft) SJ-DL5.5/100-01 40 40 SJ-DL Series (Norma) SJ-DL5.5/200-01T 160 16080 (L) SJ-DL Series (Norma) SJ-DL5.5/200-01T 160 16080 (L) SJ-VL2.2-02ZT 40 40 20 SJ-VL2.2-02ZT 80 16080 (L) 16080 (L) SJ-VL2.2-02ZT 200 16080 (L) </td <td>(Normal)</td> <td>SJ-D5.5/120-02</td> <td>160 200</td> <td>16080 (L)</td> <td></td>	(Normal)	SJ-D5.5/120-02	160 200	16080 (L)	
SJ-D7.5/120-01 SJ-D1/100-01 160 16080 (L) SJ-D6 Series (High output) SJ-D63.7/120-03T SJ-D63.7/120-03T 1600 - SJ-D0 Series (High output) SJ-D63.5/120-04T SJ-D67.5/120-05T 160 - SJ-D0 Series (High output) SJ-D65.5/120-04T SJ-D67.5/120-05T 160 - SJ-DJ Series (Compact & lightweight) SJ-DJ5.5/100-01 SJ-DJ7.5/120-01 80 80 16080 (M) SJ-DJ Series (Low-inertia) SJ-DJ5.5/120-01 80 80 16080 (L) SJ-DJ.5.5/120-01 80 80 16080 (L) SJ-DJ.5.5/120-01 80 80 16080 (L) SJ-DLS.5/120-01 200 - SJ-DL.Sri90-011 200 - SJ-DL.Sri90-011 160 16080 (L) SJ-DLS.5/200-011T- SJ-DL5.5/200-01T- SJ-VL2.2-02T 160 16080 (L) SJ-DLS.5/200-01T- SJ-VL2.2-02T 160 16080 (L) SJ-VL2.2-01T SJ-VL102T 200 - SJ-VL2.2-02T 80 16080 (M) SJ-V2.2-01T 200 - SJ-V2.2-01T 200 - SJ-V2.2-02T		SJ-D7.5/100-01			
S.J-D Series (Hollow shaft) S.J-D11/100-01		SJ-D7.5/120-01	160	16080 (L)	
SJ-D Series (Hollow shaft) SJ-D6.5/120-02T-S 160 200 16080 (L) SJ-DG Series (High output) SJ-DGS.5/120-03T 160 - SJ-DG Series (High output) SJ-DGS.5/120-03T 160 - SJ-DG Series (Compact & lightweight) SJ-DJ.5.5/120-03T 200 - SJ-DJ Series (Compact & lightweight) SJ-DJ.5.5/120-01 80 80 16080 (M) SJ-DJ.5.1/20-01 80 80 16080 (M) - SJ-DJ.5.1/20-01 80 80 16080 (M) - SJ-DJ.5.1/20-01 160 16080 (L) - SJ-DJ.5.1/20-01 200 - - SJ-DJ.5.1/20-01 20 20 - SJ-DJ.5.1/50-01T 160 16080 (L) - SJ-DL.Series (Low-inertia) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-VL2.202T 40 40 - SJ-VL2.202T 80 16080 (L) - SJ-VL2.202T 200 - - SJ-V2.201T 200 - - SJ-V2.202T		SJ-D11/100-01			
SJ-DG Series (High output) SJ-DG3.5/120-03T SJ-DG5.5/120-05T 160 SJ-DJ Series (Compact 8 lightweight) SJ-DJ.5.5/100-01 80 80 16080 (M) SJ-DJ Series (Compact 8 lightweight) SJ-DJ.5.5/100-01 80 80 16080 (M) SJ-DJ Series (Compact 8 lightweight) SJ-DJ.5.5/120-01 80 80 16080 (L) SJ-DJ.Series (Low-inertia) SJ-DJ.7.5/100-01 200 SJ-DL Series (Low-inertia) SJ-DL.5.5/120-01 160 16080 (L) SJ-DL Series (Low-inertia) SJ-DL5.5/200-01T 160 16080 (L) SJ-DL Series (Normal) SJ-VL2.202T 40 40 SJ-VL3.5/100-01 40 40 40 SJ-VL3.5/200-01T- SJ-VL2.02T 160 16080 (L) SJ-VL3.5/100-01 20 - 20 SJ-VL3.5/200-01T- SJ-VL2.02T 160 16080 (L) SJ-VL3.5/200-01T- SJ-VL2.02T 20 - SJ-V14002T 20 - SJ-V2.202T 20 - SJ-V3.6012T 200 - SJ-V4.5012T	(Hollow shaft)	SJ-D5.5/120-02T-S	200	16080 (L)	
SJ-DG Series (High output) SJ-DG S./120-04T SJ-DG 7.5/120-05T 160		SJ-DG3.7/120-03T			
(High output) SJ-D27.5/120-05T 200 SJ-DJ Series (Compact 8) iightweight) SJ-DJ5.5/100-01 80 80 16080 (M) SJ-DJ Series (Compact 8) iightweight) SJ-DJ5.5/120-01 80 90 16080 (M) SJ-DJ Series (Low-inertia) SJ-DJ7.5/120-01 80 90 16080 (L) SJ-DJ Series (Low-inertia) SJ-DL Series (Low-inertia) SJ-DL 5.5/100-01 200 SJ-DL Series (Low-inertia) SJ-DL 5.5/100-01 20 20 20 SJ-DL Series (Low-inertia) SJ-DL 5.5/100-01 40 40 SJ-DL Series (Low-inertia) SJ-DL 5.5/200-01T 160 16080 (L) SJ-VL Series (Normal) SJ-VL 2.202ZT 40 40 SJ-VL Series (Normal) SJ-VL 5.022T 160 16080 (L) SJ-V15-012T 200 - - SJ-V15-012T 200 - - SJ-V15-012T 200 - - SJ-V15-012T 200 - - SJ-V22-012T 200 - - SJ-V15-012T 200 <td>SJ-DG Series</td> <td>SJ-DG5.5/120-04T</td> <td>160</td> <td>-</td> <td></td>	SJ-DG Series	SJ-DG5.5/120-04T	160	-	
SJ-D311/100-03T 200 - SJ-DJ Series (Compact 8 lightweight) SJ-DJ5.5/100-01 80 80 16080 (M) SJ-DJ Series (Compact 8 lightweight) SJ-DJ7.5/120-01 80 80 16080 (L) SJ-DJ Series (Low-inertia) SJ-DJ7.5/120-01 160 16080 (L) SJ-DJ Series (Low-inertia) SJ-DL 5/100-01 200 - SJ-DL Series (Low-inertia) SJ-DL 5/100-01 40 40 SJ-DL Series (Hollow shaft) SJ-DL 5/200-01T 160 16080 (L) SJ-DL Series (Normal) SJ-VZ.2-01T 40 40 SJ-VZ.2-01T 80 16080 (L) 16080 (L) SJ-VZ.2-01T 80 16080 (L) 16080 (L) SJ-VZ.2-01T 80 16080 (L) 16080 (L) SJ-VZ.2-02ZT 80 16080 (L) 16080 (L) SJ-VI-Series (Normal) SJ-VI-SO2T 160 16080 (L) SJ-VI-SO1ZT 200 - 16080 (L) SJ-VI-SO1ZT 200 - 16080 (L) SJ-VI-SO1ZT 200 - 16080 (L) </td <td>(High output)</td> <td>SJ-DG7.5/120-05T</td> <td></td> <td></td> <td></td>	(High output)	SJ-DG7.5/120-05T			
SJ-DJ Series (Compact & lightweight) SJ-DJ5.5/100-01 80 80 SJ-DJ Series (Compact & lightweight) SJ-DJ5.5/120-01 80 16080 (l) SJ-DJ7.5/100-01 SJ-DJ7.5/100-01 1600 16080 (l) SJ-DJ1.700-01 200 SJ-DJ.5/100-01 200 SJ-DL.5/150-017 20 20 SJ-DL Series (Low-inertia) SJ-DL5.5/150-017 160 16080 (l) SJ-DL Series (Hollow shaft) SJ-DL5.5/200-017-S 160 16080 (l) SJ-DL Series (Hollow shaft) SJ-V2.2-017 40 40 SJ-V3.7027T 80 80 16080 (M) SJ-V11-0827T 200 SJ-V11-0827T 200 SJ-V11-0827T 200 SJ-V11-0827T 200 SJ-V22-0127 200 SJ-V3.70127 200 SJ-V45-0127 200 SJ-V22-0127 200 SJ-V22-0127 200 <tr< td=""><td></td><td>SJ-DG11/100-03T</td><td>200</td><td>-</td><td></td></tr<>		SJ-DG11/100-03T	200	-	
SJ-DJ Series (Compact & lightweight) SJ-DJ5.5/120-01 80 80 16080 (M) SJ-DJ7.5/100-01 SJ-DJ7.5/100-01 1600 16080 (L) SJ-DJ7.5/100-01 200 - SJ-DL7.5/100-01 200 - SJ-DL7.5/100-01 20 20 SJ-DL Series (Low-inertia) SJ-DL5.5/150-01T 16080 (L) SJ-DL Series (Hollow shaft) SJ-DL5.5/150-01T 160 SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-DL Series (Hollow shaft) SJ-V2.2-01T 40 40 SJ-VS Series (Normal) SJ-V1-02T 80 80 16080 (M) SJ-V1-02T 80 16080 (L) 16080 (L) SJ-V1-02T 200 - - SJ-V1-02T 200 - - SJ-V1-02T 200 - - SJ-V1-02T 200 - - SJ-V22-02T 20 - - SJ-V22-02T 200 - - SJ-V22-02T 200 <t< td=""><td></td><td>SJ-DJ5.5/100-01</td><td>80</td><td>80 16080 (M)</td><td></td></t<>		SJ-DJ5.5/100-01	80	80 16080 (M)	
SJ-DJ7.5/100-01 SJ-DU1750/20-01 160 16080 (L) SJ-DL15/80-01 200 SJ-DL5.500-011 (Low-inertia) SJ-DL5.5/160-01 20 20 SJ-DL Series (Low-inertia) SJ-DL5.5/160-01T SJ-DL5.5/150-01T 40 40 SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-VL2.202T 40 40 SJ-V2.2-01T 40 40 SJ-V2.2-02T 80 16080 (M) SJ-V2.2-02T 80 16080 (L) SJ-V1-1022002T 200 SJ-V1-10200 16080 (L) SJ-V1-10200 16080 (L) SJ-V1-10202 200 SJ-V1-10202 200 SJ-V1-10202 200 SJ-V22-042T 320 SJ-V22-012T 240 SJ-V22-012T 400 SJ-V22-012T 640	SJ-DJ Series (Compact & lightweight)	SJ-DJ5.5/120-01	80	80 16080 (M)	
SJ-DJ.75/120-01 160 16080 (L) SJ-DJ15/80-01 200 SJ-DL Series (Low-inertia) SJ-DL1.5/100-01 20 20 SJ-DL Series (Low-inertia) SJ-DL5.5/150-01T 40 40 SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T 160 16080 (L) SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-V2.2-01T 40 40 40 SJ-V2.2-01T 40 40 40 SJ-V2.2-01T 80 16080 (L) 16080 (L) SJ-V1-1-052T 200 51/V1-011-052T 200 SJ-V1-102T 200 51/V1-052T 200 SJ-V15-01ZT 200 51/V2-02T 240 SJ-V22-04ZT 320 51/V2-01T 400 SJ-V22-04ZT 240 51/V2-01T 400 SJ-V26-01ZT 320 51/V2-01T <td< td=""><td></td><td>SJ-DJ7.5/100-01</td><td></td><td></td><td></td></td<>		SJ-DJ7.5/100-01			
SJ-DJ11/100-01 200 SJ-DL Series (Low-inertia) SJ-DL0.75/100-01 20 20 SJ-DL Series (Low-inertia) SJ-DL5.5/150-01T SJ-DL5.5/200-01T 40 40 SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-V2.2-01T 40 40 40 SJ-V2.2-01T 40 40 SJ-V1.2-202ZT 80 80 SJ-V1.5-020T 1600 16080 (L) SJ-V1.5-02T 200 SJ-V15-01ZT 200 SJ-V15-01ZT 200 SJ-V15-01ZT 200 SJ-V15-01ZT 200 SJ-V18-5-01ZT 200 SJ-V18-501ZT 200 SJ-V22-06ZT 240 SJ-V22-01T 320 SJ-V22-06ZT 200 SJ-V22-06T 320		SJ-DJ7.5/120-01	160	16080 (L)	
SJ-DJ15/80-01 200		SJ-DJ11/100-01			
SJ-DL Series (Low-inertia) SJ-DL 1.5/100-01 40 40 SJ-DL 5.5/150-01T SJ-DL 5.5/200-01T SJ-DL 5.5/200-01T 16080 (L) SJ-DL Series (Hollow shaft) SJ-DL 5.2/200-01T-S 160 16080 (L) SJ-DL Series (Hollow shaft) SJ-DL 5.2/200-01T-S 160 16080 (L) SJ-V2.2-01T 40 40 SJ-V2.2-02T 40 40 SJ-V2.2-01T 80 16080 (L) SJ-V15.02T 200 - SJ-V15-01ZT 200 - SJ-V11-02T 200 - SJ-V18.5-01ZT 200 - SJ-V18.5-01ZT 200 - SJ-V18.5-01ZT 200 - SJ-V22-01ZT 200 - SJ-V22-01ZT 200 - SJ-V22-01ZT 200 - SJ-V22-01ZT 320 - SJ-V22-01ZT 320 - SJ-V22-01ZT 200 - SJ-V22-01ZT 320 - SJ-V22-01ZT 200 -<		SJ-DJ15/80-01	200		
SJ-DL Series (Low-inertia) SJ-DL1.5/100-01 40 40 SJ-DL5.5/150-01T 16080 (L) 16080 (L) SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-DL Series (Hollow shaft) SJ-V2.2-01T 40 40 SJ-V2.2-01T 40 40 SJ-V2.2-02T 80 80 SJ-V1.2-2-02T 80 16080 (L) SJ-V1.2-2-02T 80 16080 (L) SJ-V1.2-2-02T 200 - SJ-V15-012T 200 - SJ-V18.5-012T 200 - SJ-V18.5-012T 200 - SJ-V18.5-012T 240 - SJ-V22-012T 320 - SJ-V22-012T 320 - SJ-V45-012T 640 - SJ-V45-012T 640 - SJ-V45-012T 640 - SJ-V45-012T 240 - SJ-V4		SJ-DL0.75/100-01	20	20	
SJ-DL5.5/150-01T 16080 (L) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-DLS.5/200-01T-S 160 16080 (L) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-V2.2-01T 40 40 SJ-V2.2-02T 80 16080 (M) SJ-V1-022T 80 16080 (M) SJ-V1-022T 200 - SJ-V1-02T 200 - SJ-V1-02T 200 - SJ-V1-02T 200 - SJ-V15-02T 200 - SJ-V15-02T 200 - SJ-V22-01ZT 240 - SJ-V22-01ZT 320 - SJ-V22-01ZT 320 - SJ-V22-01ZT 640 - SJ-V45-01ZT 640 - SJ-V45-01ZT 640 - SJ-V11-00T 16080 (L) - SJ-V22-05T - - SJ-V22-05T -	SJ-DL Series (Low-inertia)	SJ-DL1.5/100-01	40	40	
SJ-DL5.5/200-011 160 16080 (L) SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-V2.2-01T 40 40 SJ-V2.2-02T 40 40 SJ-V2.2-01T 40 40 SJ-V2.2-02T 80 80 SJ-V11-082T 80 16080 (M) SJ-V11-082T 200 - SJ-V15-012T 200 - SJ-V18.5-04ZT 200 - SJ-V18.5-04ZT 200 - SJ-V22-01ZT 200 - SJ-V22-01ZT 240 - SJ-V22-01ZT 320 - SJ-V22-01ZT 320 - SJ-V22-01ZT 400 - SJ-V22-01ZT 400 - SJ-V22-01ZT 640 - SJ-V45-01ZT 640 - SJ-V11-01T 160 16080 (L) SJ-V22-05T 200 - SJ-V22-05T 320 - <t< td=""><td>(2011 1101 110)</td><td>SJ-DL5.5/150-01T</td><td></td><td></td><td></td></t<>	(2011 1101 110)	SJ-DL5.5/150-01T			
SJ-DL Series (Hollow shaft) SJ-DL.5.5/200-01T-S 160 16080 (L) SJ-DL Series (Hollow shaft) SJ-VL5.5/200-01T-S 160 16080 (L) SJ-VZ.2-02ZT 40 40 SJ-VL2.2-02ZT 80 16080 (M) SJ-VT.5-03ZT 160 16080 (L) SJ-VT.5-03ZT 160 16080 (L) SJ-V11-08ZT 200 - SJ-V15-01ZT 200 - SJ-V15-01ZT 200 - SJ-V18.5-01ZT 200 - SJ-V18.5-01ZT 200 - SJ-V18.5-01ZT 200 - SJ-V22-06TT 240 - SJ-V22-06TT 320 - SJ-V22-06TT 320 - SJ-V45-01ZT 640 - SJ-V45-01ZT 200 - SJ-V45-01ZT 200 - SJ-V45-01ZT 640 - SJ-V45-01ZT 200 - SJ-V11-00T 160 16080 (L) SJ-V11-02FZT<		SJ-DL5.5/200-011	160	16080 (L)	
SJ-DL Series (Hollow shaft) SJ-DL5.5/200-01T-S 160 16080 (L) SJ-V2.2-01T 40 40 SJ-V2.2-02ZT 40 40 SJ-V2.2-02ZT 80 16080 (M) SJ-V7.5-03ZT 160 16080 (L) SJ-V1-08ZT 200 SJ-V1-08ZT 200 SJ-V15-01ZT 200 SJ-V18.5-01ZT 200 SJ-V18.5-01ZT 200 SJ-V22-01ZT 240 SJ-V22-01ZT 240 SJ-V22-01ZT 320 SJ-V22-01ZT 320 SJ-V26-01ZT 320 SJ-V26-01ZT 320 SJ-V45-01ZT 640 SJ-V45-01ZT 640 SJ-V45-01ZT 200 SJ-V11-01T 160 16080 (L) SJ-V22-09T 320 SJ-V22-19ZT 100 <t< td=""><td></td><td>5J-DL7.5/150-011</td><td></td><td></td><td></td></t<>		5J-DL7.5/150-011			
SJ-V2.2-01T 40 40 SJ-V2.2-02ZT 80 80 SJ-V3.7-02ZT 80 16080 (M) SJ-V7.5-03ZT 160 16080 (L) SJ-V11-08ZT 200 SJ-V15-01ZT 200 SJ-V15-01ZT 200 SJ-V18.5-01ZT 200 SJ-V18.5-01ZT 200 SJ-V18.5-01ZT 200 SJ-V22-01ZT 240 SJ-V22-06T 240 SJ-V22-06T 240 SJ-V22-06T 240 SJ-V26-012T 320 SJ-V45-012T 640 SJ-V45-012T 640 SJ-V5-03T 200 SJ-V11-09T 160 16080 (L) SJ-V22-05T 320 SJ-V22-05T 320 SJ-V22-192T 160 16080 (L) SJ-V22-192T 320	(Hollow shaft)	SJ-DL5.5/200-01T-S	160	16080 (L)	
SJ-VEZ-2-0221 80 80 SJ-V3.7-02ZT 80 16080 (M) SJ-V7.5-03ZT 160 16080 (L) SJ-V1202T SJ-V15-03ZT 160 SJ-V121 200 SJ-V15-01ZT 200 SJ-V15-01ZT 200 SJ-V18.5-01ZT 200 SJ-V18.5-01ZT 240 SJ-V22-01ZT 320 SJ-V22-06ZT 240 SJ-V22-06ZT 240 SJ-V22-06ZT 240 SJ-V22-06ZT 240 SJ-V22-06ZT 400 SJ-V26-01ZT 320 SJ-V26-01ZT 640 SJ-V45-01ZT 640 SJ-V55-01ZT 640 SJ-V11-09T 160 16080 (L) SJ-V22-09ZT 320 SJ-V22-19ZT 320 SJ-V22-19ZT 160 <td></td> <td>SJ-V2.2-01T</td> <td>40</td> <td>40</td> <td></td>		SJ-V2.2-01T	40	40	
SJ-V3.7-02ZT 80 10080 (M) SJ-V7.5-03ZT 160 16080 (M) SJ-V17.5-03ZT 160 16080 (L) SJ-V17 SJ-V11-08ZT 200 SJ-V15-01ZT 200 SJ-V15-01ZT 200 SJ-V18.5-04ZT 200 SJ-V18.5-04ZT 240 SJ-V22-04ZT 320 SJ-V22-06ZT 240 SJ-V22-06ZT 240 SJ-V22-06ZT 240 SJ-V26-01ZT 320 SJ-V26-01ZT 640 SJ-V375-012T 640 SJ-V11-01T 160 16080 (L) SJ-V11-02F 320 SJ-V22-192T 320 SJ-V22-192T 160 16080 (L) <td></td> <td>SJ-VL2.2-02Z1</td> <td></td> <td>80</td> <td></td>		SJ-VL2.2-02Z1		80	
SJ-V7.5-03ZT 160 16080 (L) SJ-V1-08ZT SJ-V11-08ZT 200 SJ-V15-01ZT 200 SJ-V15-01ZT 200 SJ-V15-01ZT 200 SJ-V15-01ZT 200 SJ-V18.5-04ZT 240 SJ-V22-01ZT 320 SJ-V22-06TT 320 SJ-V22-06TT 320 SJ-V26-012T 320 SJ-V26-012T 320 SJ-V26-012T 640 SJ-V55-012T 640 SJ-V11-09T 160 16080 (L) SJ-V11-09T 160 SJ-V11-02FZT 320 SJ-V22-192T 320 SJ-V22-192T 320		SJ-V3.7-02ZT	80	16080 (M)	
SJ-V11-08ZT 200 SJ-V15-01ZT 200 SJ-V15-09ZT 200 SJ-V15-01ZT 200 SJ-V18-5-01ZT 200 SJ-V18.5-01ZT 200 SJ-V18.5-04ZT 240 SJ-V22-01ZT 240 SJ-V22-06ZT 240 SJ-V22-06T 320 SJ-V26-01ZT 320 SJ-V45-01ZT 400 SJ-V45-01ZT 640 SJ-V5-01ZT 640 SJ-V5-01ZT 640 SJ-V11-01T 160 16080 (L) SJ-V11-01T 160 16080 (L) SJ-V22-05T 320 SJ-V22-192T 320 SJ-V22-192T 160 16080 (L) SJ-V22-192T 320 SJ-V22-192T 320 SJ-V22-192T 160		SJ-V7.5-03ZT	160	16080 (L)	
SJ-V Series (Normal) SJ-V15-01ZT 200 — SJ-V Series (Normal) SJ-V15-09ZT 200 — SJ-V18.5-01ZT 200 — SJ-V18.5-01ZT 240 — SJ-V22-01ZT 240 — SJ-V22-06ZT 240 — SJ-V22-06ZT 240 — SJ-V22-06ZT 240 — SJ-V22-06ZT 240 — SJ-V20-01ZT 320 — SJ-V45-01ZT 400 — SJ-V45-01ZT 640 — SJ-V55-01ZT 640 — SJ-V11-01T 160 16080 (L) SJ-V11-01T 160 16080 (L) SJ-V18.5-03T 240 — SJ-V22-05T 320 — SJ-V22-192T 320 — SJ-V22-192T 160 16080 (L) SJ-V22-192T 320 — SJ-V22-192T 320 — SJ-V22-05T 32.0 — <t< td=""><td></td><td>SJ-V11-08ZT</td><td></td><td></td><td></td></t<>		SJ-V11-08ZT			
SJ-V Series (Normal) SJ-V15.09ZT SJ-V18.5-01ZT 200 SJ-V15.09ZT SJ-V18.5-04ZT 240 SJ-V22-01ZT 240 SJ-V22-04ZT 320 SJ-V22-04ZT 320 SJ-V22-06ZT 240 SJ-V22-06ZT 320 SJ-V22-06ZT 320 SJ-V37-01ZT 400 SJ-V45-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V11-01T 160 16080 (L) SJ-V11-09T 160 SJ-V18.5-03T 240 SJ-V18-03T 240 SJ-V22-05T 320 SJ-V22-09T 320 SJ-V22-09T 320 SJ-V22-09T 320 SJ-V22-09T 320 SJ-V22-09T 320		SJ-V11-13ZT	200	-	
SJ-V Series (Normal) SJ-V18.5-01ZT SJ-V18.5-04ZT 200 — SJ-V18.5-04ZT 240 — SJ-V22-01ZT 240 — SJ-V22-01ZT 320 — SJ-V22-01ZT 320 — SJ-V22-01ZT 320 — SJ-V22-06ZT 240 — SJ-V22-06ZT 240 — SJ-V22-06ZT 240 — SJ-V22-06T 320 — SJ-V37-01ZT 400 — SJ-V45-01ZT 640 — SJ-V55-01ZT 640 — SJ-V55-01ZT 160 16080 (L) SJ-V11-09T 160 — SJ-V18.5-03T 240 — SJ-V18.5-03T 240 — SJ-V22-09T 320 — SJ-V22-09T 320 — SJ-VK22-19ZT 160 16080 (L) SJ-VK22-09T 320 — SJ-VL Series (Low-inertia) SJ-VL11-02FZT 160 16080 (L		SJ-V15-01ZT			
SJ-V18.5-0121 240 SJ-V22-012T 240 SJ-V22-012T 320 SJ-V22-012T 320 SJ-V22-012T 320 SJ-V22-06ZT 240 SJ-V22-06ZT 240 SJ-V22-06ZT 240 SJ-V26-01ZT 320 SJ-V26-01ZT 320 SJ-V37-01ZT 400 SJ-V45-01ZT 640 SJ-V45-01ZT 640 SJ-V11-01T 160 SJ-V11-01T 160 SJ-V11-03T 200 SJ-V115-03T 240 SJ-V115-03T 240 SJ-V22-06T 320 SJ-V22-09T 320 SJ-V22-09T 320 SJ-V22-09T 320 SJ-VK22-19ZT 160 SJ-VK22-19ZT 320 SJ-VK22-09FZT 320 SJ-VK22-09T 320 SJ-VL11-02FZT 160 SJ-VL11-02FZT 160 SJ-VL11-02FZT 160 SJ-VL Series	SJ-V Series	SJ-V15-0921	200	_	
SJ-V18.3-0421 240 SJ-V22-01ZT 320 SJ-V22-04ZT 320 SJ-V22-06ZT 240 SJ-V26-01ZT 320 SJ-V26-01ZT 320 SJ-V37-01ZT 400 SJ-V45-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V11-01T 160 16080 (L) SJ-V11-09T 160 SJ-V115-03T 200 SJ-V115-03T 240 SJ-V22-09T 320 SJ-V22-09T 320 SJ-VK22-19ZT 160 16080 (L) SJ-VK22-19ZT 320 SJ-V Series (Hollow shaft) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Low-inertia) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VLS15-11FZT 240 <td>(INOITIAI)</td> <td>SJ-V18.5-U1Z1</td> <td></td> <td></td> <td></td>	(INOITIAI)	SJ-V18.5-U1Z1			
SJ-V22-04ZT 320 SJ-V22-06ZT 240 SJ-V26-01ZT 320 SJ-V26-01ZT 320 SJ-V37-01ZT 400 SJ-V45-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V11-01T 160 16080 (L) SJ-V15-03T 200 SJ-V15-03T 200 SJ-V18.5-03T 240 SJ-V22-09T 320 SJ-V22-09T 320 SJ-VS2-19ZT SJ-VS2-19ZT 160 16080 (L) SJ-VS7.5-14FZT 160 16080 (L) SJ-VK22-19ZT 320 SJ-VKS90-16FZT 320 SJ-VLS0-16FZT 160 16080 (L) SJ-VL11-02FZT 160 16080 (L) SJ-VL11-02FZT 240 SJ-VLS0-1		SI-V22-017T	240	-	
SJ-V22-06ZT 240 SJ-V26-01ZT 320 SJ-V37-01ZT 400 SJ-V45-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V11-01T 160 16080 (L) SJ-V15-03T 200 SJ-V15-03T 240 SJ-V18-5-03T 240 SJ-V22-09T 320 SJ-V22-09T 320 SJ-VK22-19ZT SJ-VK22-19ZT SJ-VS7-5-14FZT 160 16080 (L) SJ-VK22-19ZT 320 SJ-VKS26-09FZT 320 SJ-VKS30-16FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-02FZT 160 16080 (L) SJ-VL11-02FZT 160 16080 (L) SJ-VL11-02FZT 240 SJ-VL Series (Hollow shaft) SJ-VLS15-11FZT 240 -		SJ-V22-04ZT	320	_	
SJ-V26-01ZT 320 SJ-V37-01ZT 400 SJ-V45-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V11-01T 160 16080 (L) SJ-V11-09T 160 SJ-V15-03T 200 SJ-V18.5-03T 240 SJ-V22-05T 320 SJ-V22-192T SJ-VK22-192T SJ-V Series (Hollow shaft) SJ-VK526-09FZT 320 SJ-V Series (Low-inertia) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Low-inertia) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VLS15-11FZT 240		SJ-V22-06ZT	240	_	
SJ-V37-01ZT 400		SJ-V26-01ZT	320	_	
SJ-V45-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V55-01ZT 640 SJ-V11-01T 16080 (L) 16080 (L) SJ-V15-03T 200 SJ-V15-03T 240 SJ-V15-03T 240 SJ-V22-05T 320 SJ-V22-09T 320 SJ-V22-19ZT 160 16080 (L) SJ-VS7.5-14FZT 160 16080 (L) SJ-VS8 SJ-VKS26-09FZT 320 SJ-VL Series (Lollow shaft) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Low-inertia) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VL11-05FZT-S01 160 SJ-VL Series (Hollow shaft) SJ-VLS15-11FZT 240		SJ-V37-01ZT	400		
SJ-V55-012T 160 16080 (L) SJ-V Series (Wide range constant output) SJ-V11-09T 160 16080 (L) SJ-V15-03T 200 - SJ-V15-03T 240 - SJ-V22-05T 320 - SJ-V22-09T 320 - SJ-VS2-09T 320 - SJ-VS2-192T 5J-VK22-192T 160 SJ-VS7.5-14F2T 160 16080 (L) SJ-VK30-16F2T 320 - SJ-VL Series (Hollow shaft) SJ-VL11-02F2T 160 16080 (L) SJ-VL Series (Low-inertia) SJ-VL11-02F2T 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VL11-05F2T-S01 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VLS15-11F2T 240 -		SJ-V45-01ZT	640	_	
SJ-VI 1-011 160 16080 (L) SJ-V11-09T 160 16080 (L) SJ-V15-03T 200 (Wide range constant output) SJ-V15-03T 240 SJ-V22-05T 320 SJ-V22-09T 320 SJ-VSeries (Hollow shaft) SJ-VS7.5-14FZT 160 16080 (L) SJ-VSS0-09FZT 320 SJ-VLSeries (Low-inertia) SJ-VL11-02FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VL18-505FZT 240 SJ-VL Series (Hollow shaft) SJ-VLS15-11FZT 200		SJ-V55-01ZT			
SJ-V Series (Wide range constant output) SJ-V18.5-03T 200 SJ-V18.5-03T 240 SJ-V22-05T 320 SJ-V22-09T 320 SJ-VS7.5-14FZT 160 16080 (L) SJ-VKS26-09FZT 320 SJ-VKS26-09FZT 320 SJ-VL Series (Hollow shaft) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Low-inertia) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VL18.5-05FZT 240 SJ-VL Series (Hollow shaft) SJ-VLS15-11FZT 200		SJ-VII-UII SI V11 00T	160	16080 (L)	
Burner Burner Burner (Wide range constant output) SJ-V18.5-03T 240 SJ-V22-05T 320 SJ-VK22-19ZT 320 SJ-V Series (Hollow shaft) SJ-VK22-19ZT 160 16080 (L) SJ-VKS26-09FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-05FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-05FZT 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VL18-5-05FZT 240 SJ-VL Series (Hollow shaft) SJ-VLS15-11FZT 200	S I-V Sories	SJ-V15-03T	200		
SJ-V22-05T 320 SJ-VK22-19ZT 320 SJ-V Series (Hollow shaft) SJ-VK22-19ZT 160 16080 (L) SJ-V Series (Hollow shaft) SJ-VKS26-09FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-05FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-05FZT 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VL18-5-05FZT 240	(Wide range	SJ-V18.5-03T	240	_	
SJ-V22-09T 320 SJ-VK22-19ZT SJ-V Series (Hollow shaft) SJ-VK52-19ZT 160 16080 (L) SJ-VKS26-09FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-05FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-05FZT 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VL18-5-05FZT 240	constant output)	SJ-V22-05T			
SJ-VK22-19ZT 6000000000000000000000000000000000000		SJ-V22-09T	320	-	
SJ-V Series (Hollow shaft) SJ-VS/.5-14F2.1 160 16080 (L) SJ-VKS26-09FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-02FZT 320 SJ-VL Series (Low-inertia) SJ-VL11-02FZT 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VL11-05FZT 240		SJ-VK22-19ZT		10055 (1)	
SJ-VKS20-UFZ1 320 — SJ-VKS30-16FZT 320 — SJ-VL Series (Low-inertia) SJ-VL11-05FZT 160 16080 (L) SJ-VL Series (Low shaft) SJ-VL11-05FZT 240 — SJ-VL Series (Hollow shaft) SJ-VLS15-11FZT 200 —	SJ-V Series	SJ-VS7.5-14FZT	160	16080 (L)	
SJ-VL Series (Low-inertia) SJ-VL11-05FZT SJ-VL11-05FZT S01 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VLS15-11FZT 240 —	(Hollow shaft)	SJ-VKS20-U9FZ1	320	-	
SJ-VL Series (Low-inertia) SJ-VL11-05FZT-S01 160 16080 (L) SJ-VL Series (Hollow shaft) SJ-VL18.5-05FZT 240 —		SJ-VI 11-02F7T		-	
(Low-inerua) S.J-VL18.5-05FZT 240 S.J-VL Series (Hollow shaft) S.J-VLS15-11FZT 200	SJ-VL Series	SJ-VL11-05FZT-S01	160	16080 (L)	
SJ-VL Series SJ-VLS15-11FZT 200 —	(Low-inertia)	SJ-VL18.5-05FZT	240		
	SJ-VL Series (Hollow shaft)	SJ-VLS15-11FZT	200	-	

SELECTION OF CABLES

Power	Cable	
Drive unit side		Motor side
 - All axes CNU01SEF (AWG14) - L-axis only CNU01SEL (AWG14) - M-axis only CNU01SEM (AWG14) - S-axis only CNU01SES (AWG14) 		
Terminal block connection		
 - All axes CNU01SEF (AWG14) - L-axis only CNU01SEL (AWG14) - M-axis only CNU01SEM (AWG14) - S-axis only CNU01SES (AWG14) 		
 All axes CNU01SEF (AWG14) L-axis only CNU01SEL (AWG14) M-axis only CNU01SEM (AWG14) S-axis only CNU01SES (AWG14) 		
Terminal block connection		
 All axes CNU01SEF (AWG14) L-axis only CNU01SEL (AWG14) M-axis only CNU01SEM (AWG14) S-axis only CNU01SES (AWG14) 		
Terminal block connection		Terminal block connection
 All axes CNU01SEF (AWG14) L-axis only CNU01SEL (AWG14) M-axis only CNU01SEM (AWG14) S-axis only CNU01SES (AWG14) 		
Terminal block connection		

19 DRIVE SYSTEM

■MDS-E Series Detector Cable and Connector for Spindle Motor Selection List

								Spindl	e detecto	r cable					
				When	Vhen connecting to a spindle motor When connecting to a spindle side detector										
		Drive	e unit pe	Motor	r side PLG	i cable	Spind	le side ac tor TS569	curacy 0 cable	Spin	dle side d	etector O	SE-1024	cable	
Spindle	motor type	MĎ	S-E-		Single c	onnector		Single c	onnector	Ca	ble	Sing	gle conne	ctor	
opindie		SP	SP2	Cable	Drive unit side	Detector side	Cable	Drive unit side	Detector side	Straight	Right angle	Drive unit side	Detect Straight	or side Right angle	
	SJ-D3.7/100-01 SJ-D5.5/100-01	80	80 16080												
	SJ-D5.5/120-01	1	(M)												
SJ-D Series	SJ-D5.5/120-02	160	16080												
(INOTTIAI)	SJ-D7.5/100-01	200	(L)												
	SJ-D7.5/120-01	160	16080												
	SJ-D11/100-01	1	(L)												
SJ-D Series	SJ-D5.5/120-02T-S	160	16080]											
(Hollow snaπ)	SI-DG3 7/120-03T	200	(L)												
S.I-DG Series	SJ-DG5.5/120-04T	160	_												
(High output)	SJ-DG7.5/120-05T														
	SJ-DG11/100-03T	200	-	1											
	SJ-DJ5.5/100-01		80	1											
	SJ-DJ5.5/120-01	80	16080 (M)												
SJ-DJ Series	SJ-DJ7.5/100-01		(ivi)												
lightweight)	SJ-DJ7.5/120-01	160	16080												
	SJ-DJ11/100-01	1	(L)												
	SJ-DJ15/80-01	200	_]											
	SJ-DL0.75/100-01	20	20]											
C I DI Corioo	SJ-DL1.5/100-01	40	40												
(Low-inertia)	SJ-DL5.5/150-01T		16090												
	SJ-DL5.5/200-01T	160	(L)												
	SJ-DL7.5/150-01T			-											
SJ-DL Series (Hollow shaft)	SJ-DL5.5/200-01T-S	160	16080												
(Hollow shaft)	SJ-V2.2-01T	10		CNP2E-1-											
	SJ-VL2.2-02ZT	40	40			CNEPGS	CNP2E-			CNP3EZ-	CNP3EZ-		CNE20-	CNE20-	
	SJ-V3.7-02ZT	80	80	⊡M ⊡ · Lenath			1-⊡M □ · Length			2P-⊡M	3P-⊡M □ · Length		29S (10)	29L (10)	
			16080 (M) 16080	(m)	CNU2S		(m)	CNU2S	CNEPGS	(m)	(m)	CNEPGS	cable	cable	
	SJ-V7.5-03ZT	160	(L)	2, 3, 4, 5,	(AWG10)		2, 3, 4, 5,	(AWG10)		2, 3, 4, 5,	2, 3, 4, 5,		outline	outline	
	SJ-V11-08ZT			20, 25, 30			20,25, 30			20, 25, 30	20, 25, 30		(mm)	(mm)	
	SJ-V11-13ZT	200	-	., .,											
	SJ-V15-01ZT			-											
SJ-V Series	SJ-V15-09ZT	200	_												
(Normal)	SJ-V18.5-01ZT			-											
	SJ-V18.5-04ZT	240	_												
	SJ-V22-01ZI	000		-											
	SJ-V22-04Z1	320	-	-											
	SI-V22-0021	320	+	-											
	SI-V37-017T	400	+	1											
	SJ-V45-017T			1											
	SJ-V55-01ZT	640	-												
	SJ-V11-01T		16080	1											
	SJ-V11-09T	160	(L)												
SJ-V Series	SJ-V15-03T	200	-	1											
(Wide range	SJ-V18.5-03T	240]											
output)	SJ-V22-05T]											
	SJ-V22-09T	320	-												
	SJ-VK22-19ZT														
	SJ-VS7.5-14FZT	160	16080												
SJ-V Series	SJ-VKS26-09F7T		(L)	1											
U IUIIUVV SFIAT()	SJ-VKS30-16F7T	320	-												
	SJ-VL11-02FZT		16080	1											
SJ-VL Series	SJ-VL11-05FZT-S01	160	(L)												
(Low-Inertia)	SJ-VL18.5-05FZT	240	-	1											
SJ-VL Series	SJ-VLS15-11F7T	200	_	1											
(Hollow shaft)			1		1	1	1	1	1		1	1		1	

■MDS-EM Series Power Cable and Brake Cable for Servo Motor Selection List

		Drive unit		Power Cable	Image: Process of the second secon	cable		
Servo m	otor type	MDS-EM-	Drivo unit oido	Moto	r side	Motor side		
Servo motor type HG123 HG123 HG142 HG54 HG104 HG223 HG302 HG154 HG154 HG224 HG204 HG303 HG324	SPV3	Drive unit side	Straight Right angle		Straight	Right angle		
	HG123	10040						
	HG142	10040		CNP18-10S (14)	CNP18-10L (14)			
	HG54			Applicable cable outline	Applicable cable outline			
	HG104		- All axes	φ10.5 to 14 (mm)	φ10.5 to 14 (mm)			
	HG223	10080	(AWG14)				CNB10-R2L (6) Applicable cable outline	
HG Series	HG302	20080	- L-axis only CNU01SEL (AWG14)	CNP22-22S (16) Applicable cable outline \$\phi12.5 to 16 (mm)	CNP22-22L (16) Applicable cable outline \$\phi12.5 to 16 (mm)	CNB10-R2S (6) Applicable cable outline		
	HG154	10080	CNU01SEM	CNP18-10S (14)	CNP18-10L (14)	φ4.0 to 6.0 (mm)	φ4.0 to 6.0 (mm)	
	HG224	16080	- S-axis only	φ10.5 to 14 (mm)	φ10.5 to 14 (mm)			
	HG204	200120	(AWG14)					
	HG303 HG354 200120		,	CNP22-22S (16)	CNP22-22L (16)			
		200120		φ12.5 to 16 (mm)	φ12.5 to 16 (mm)			
	HG453	200120						

■MDS-EM Series Detector Cable and Connector for Servo Motor Selection List

						Serv	o detector c	able			
				Motor	side detecto	r cable			Ball screw s	ide detector	
0		Drive unit	Ca	ble	Si	ngle connect	or	Ball sc	rew side dete	ector (OSA10	5ET2A)
Servo	motor pe	MDS-EM-	(for D4	18/D51)	Drive unit	Moto	r side	Ca	ble	Single co	onnector
		SPV3	Straight	Right angle	side	Straight	Right angle	Straight	Right angle	Straight	Right angle
	HG123	10040									
	HG142	10040									
	HG54										
	HG104	10080									
	HG223	20080	CNV2E-8P-	CNV2E-9P-		(9)	(9)	CNV2E-8P-	CINV2E-9P-	(9)	(9)
HG	HG302		□ : Length (m)	□ : Length (m)	CNU2S	Applicable	Applicable	□ : Length (m)	□ : Length (m)	Applicable	Applicable
Series	HG154	10080	2, 3, 4, 5, 7,	2, 3, 4, 5, 7,	(AWG18)	cable outline	cable outline	2, 3, 4, 5,7,	2, 3, 4, 5, 7,	cable outline	cable outline
	HG224	16080	10, 15, 20,	10, 15, 20,		φ6.0 to 9.0 (mm)	φ6.0 to 9.0 (mm)	10, 15, 20,	10, 15, 20,	φ6.0 to 9.0 (mm)	φ6.0 to 9.0 (mm)
	HG204	20080	20,00	20,00		()	()	20,00	20,00	()	()
	HG303	200120									
	HG354	200120									
	HG453	200120									

127

SELECTION OF CABLES

■MDS-EM Series Power Cable, Detector Cable, and Connector for Spindle Motor Selection List

			_						Spind	le detector	r cable				
			Power	Cable	When cor	nnecting to motor	a spindle		١	When conn	ecting to a	spindle si	de detecto	r	
		Drive			Moto	r side PLG	cable	Spindle s	ide accuracy TS5690 cable	detector	Spi	ndle side o	letector O	SE-1024 ca	able
Spindl	e motor	type	Drive unit	Motor		Single c	onnector	-	Single co	onnector	Ca	ble	Sin	gle conne	ctor
-1	/pc	MDS-EM-		Side	Cable	Drive unit side	Detector side	Cable	Drive unit side	Detector side	Straight	Right angle	Drive unit side	Detect	tor side Right angle
SJ-D Series	SJ-D5.5/ 100-01 SJ-D5.5/ 120-01 SJ-D7.5/ 100-01 SJ-D7.5/ 120.01	10040 10080													
(Normal)	SJ-D5.5/ 120-02	10040 10080 16080 20080													
	SJ-D11/ 100-01	16080]												
SJ-D Series (Hollow shaft)	SJ-D5.5/ 120-02T-S	10040 10080 16080 20080	-												
8100	SJ-DG3.7/ 120-03T SJ-DG5.5/														
Series (High output)	120-04T SJ-DG7.5/ 120-05T	16080													
. ,	SJ-DG11/ 100-03T	200120	-												
	SJ-DJ5.5/ 100-01														
	SJ-DJ5.5/ 120-01	10040			CNP2E- 1-□M □ : Length (m) 1 2, 3, 4, 5, 7, 10, 15, 20, 25, 30			CNP2E-			CNP3EZ-	CNP3EZ-		CNE20-	- CNE20-) 29L (10) Applicable cable outline 10 \$\overline\$.8 to 10 (mm)
SJ-DJ Series (Compact	SJ-DJ7.5/ 100-01	10080	Terminal block	Terminal block		CNU2S (AWG18)	CNEPGS	1-□M □ : Length (m)	CNU2S (AWG18)	CNEPGS	2P-□M □ : Length (m)	3P-⊡M □ : Length (m)	CNU2S (AWG18)	29S (10) Applicable cable	
& lightweight)	SJ-DJ7.5/ 120-01 SJ-DJ11/	40000	connection	connection				2, 3, 4, 5, 7, 10, 15, 20, 25, 30			2, 9, 4, 0, 15, 7 7, 10, 15, 7 20, 25, 30 2	2, 3, 4, 5, 7, 10, 15, 20, 25, 30		outline ¢6.8 to 10 (mm)	
	100-01 SJ-DJ15/	16080	-												
	80-01	20080	-												
SJ-DL Series (Low- inertia)	150-01T SJ-DL7.5/ 150-01T	16080													
	SJ-V7.5- 03ZT	16080	-												
SJ-V Series (Normal)	SJ-V11- 08ZT SJ-V11- 13ZT SJ-V15- 01ZT SJ-V15- 09ZT	20080													
SJ-V Series (Wide range	SJ-V18.5- 01ZT SJ-V11- 01T SJ-V11- 09T	16080													
constant output) SJ-V Series (Hollow	SJ-V15- 03T SJ-VL11- 02FZT SJ-VL11-	20080	-												

■MDS-EJ Series Power Cable and Brake Cable for Servo Motor Selection List

		[Power Cable		Brake	cable
Servo	motor type	Drive unit type MDS-EJ-	Drive unit side	Moto	r side	Moto	r side
		V1		Straight	Right angle	Straight	Right angle
	HG54	30					
	HG104			CNP18-10S (14)	CNP18-10L (14)		
	HG123	1		Applicable cable	Applicable cable		
	HG142	1		610.5 to 14 (mm)	Ole Applicable cable outline im) \$\phi10.5\$ to 14 (mm) 16) CNP22-22L (16) ble Applicable cable CNB10-R2S (6) CNB10-R		
	HG223	40		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
		1		CNP22-22S (16)	CNP22-22L (16)	1	
	HG302		O mail and fam	Applicable cable	Applicable cable	CNB10-R2S (6)	CNB10-R2L (6)
HG Series	110002		Supplied for	outline	outline	Applicable cable outline	Applicable cable outline
			each drive unit	φ12.5 to 16 (mm)	φ12.5 to 16 (mm)	φ4.0 to 6.0 (mm)	φ4.0 to 6.0 (mm)
	HG154			CNP18-10S (14)	CNP18-10L (14)		
				Applicable cable	Applicable cable		
	HG224			outline	outline		
		80		φ10.5 to 14 (mm)	φ10.5 to 14 (mm)		
	HG204	7		CNP22-22S (16)	CNP22-22L (16)]	
	HG303	-		Applicable cable	Applicable cable		
	1.0000			outline	outline		
	HG354	100		φ12.5 to 16 (mm)	φ12.5 to 16 (mm)		

■MDS-EJ Series Detector Cable and Connector for Servo Motor Selection List

						Sei	rvo detector	cable				
				Motor si	ide detect	or cable			Ball screw s	ide detector	•	
		Drive unit			S	Single connector			Ball screw side detector OSA105ET2A			
Servo	motor type	type MDS-EJ-	Ca	ble	Drive	Moto	r side	Ca	ble	Single c	onnector	
		V1	Straight	Right angle	unit side	Straight	Right angle	Straight	Right angle	Straight	Right angle	
	HG54	30										
	HG104]	CNV2E-9P- □M								
	HG123]										
	HG142	40	CNV2E-8P-			CNE10-	CNE10- R10L (9) Applicable	CNV2E-8P-	CNV2E-9P-	CNE10-	CNE10-	
	HG223]	: Lenath			R10S (9)		□ : Length (m)	□ : Lenath	R10S (9)	R10L (9)	
HG	HG302		(m)	(m)	(AWG18)	Applicable			(m)	Applicable	Applicable	
	HG154		2, 3, 4, 5, 7,	2, 3, 4, 5, 7,	, , , , , , , , , , , , , , , , , , , ,	φ6.0 to 9.0	φ6.0 to 9.0	2, 3, 4, 5, 7,	2, 3, 4, 5, 7,	φ6.0 to 9.0	φ6.0 to 9.0	
	HG224		25, 30	25, 30		(mm)	(mm)	25, 30	25, 30	Applicable A , 5, 7, cable outline ca , 5, 20, φ6.0 to 9.0 φ 30 (mm) (mm)	(mm)	
	HG204								,			
	HG303											
	HG354	100										

MDS-EJ Series Power Cable, Detector Cable, and Connector for Spindle Motor Selection List

			Power	Cable					Spind	le detector	cable				
			When co to a spino	nnecting dle motor	When cor	necting to motor	a spindle		v	When conn	ecting to a	a spindle si	de detecto	r	
		Drive unit			Motor	r side PLG	cable	Spindle s	ide accuracy TS5690 cable	detector	Spi	indle side o	letector O	SE-1024 ca	able
Spind	e motor	type	Drive unit	Motor		Single co	onnector		Single co	onnector	Ca	ble	Sin	gle connec	ctor
, i	ype	MDS-EJ-	side	side	Cable	Drive unit	Detector	Cable	Drive unit	Detector	Straight	Right angle	Drive unit	Detect	or side
		SP				side	side		side	side	otraight	night angle	side	Straight	Right angle
	SJ-D3.7/	80	Supplied for												
	100-01	00	each drive unit												
	SJ-D5.5/														
SJ-D Series (Normal)	100-01	100													
SJ-D	SJ-D5.5/														
Series	120-01														
(Normal)	SJ-D7.5/														
	01075/	120			CNP2E-			CNP2E-			CNP3EZ-	CNP3EZ-		CNE20-	CNE20-
	3J-D7.5/				1⊡M			1-□M			2P-□M	3P-□M		29S (10)	29L (10)
	SID11/			Terminal	□: Length	CNILIOS		🗆 : Length	CNILIOS		🗆 : Length	🗆 : Length	CNILIZE	Applicable	Applicable
	100-01	160	Terminal	block	(m)	(AWG18)	CNEPGS	(m)	(AWG18)	CNEPGS	(m)	(m)	(AWG18)	cable	cable
	S.I-D.I5 5/		block	connection	2, 3, 4, 5,	(World)		2, 3, 4, 5,	(Ward)		2, 3, 4, 5,	2, 3, 4, 5,		outline	outline
	100-01		connection		7, 10, 15,			7, 10, 15,			7, 10, 15,	7, 10, 15,		φ6.8 to 10	φ6.8 to 10
	SJ-DJ5.5/	100			20, 25, 30			20, 25, 30			20, 25, 30	20, 25, 30		(mm)	(mm)
SJ-DJ	120-01														
(Compact	SJ-DJ7.5/		1												
&	100-01	100													
lightweight)	SJ-DJ7.5/	120													
	120-01														
	SJ-DJ11/ 100-01	160													

129

SELECTION OF CABLES

DRIVE SYSTEM LIST OF CABLES

<Optical communication cable>

	Itom	Madal	Length	Contonto	Com	patible m	odel
	nem	woder	(m)	Coments	E/EH	EM	EJ
		J396 L0.3M	0.3				
		J396 L0.5M	0.5				
	Optical communication cable	J396 L1M	1				
	For wiring between drive units (inside panel)	J396 L2M	2				
		J396 L3M	3				
		J396 L5M	5				
For	Ontical communication cable	J395 L3M	3			0	
	Ear wiring between drive units (outside papel)	J395 L5M	5				
CN1A/	For wiring between MC drive units	J395 L7M	7				
OPT1A	For wining between NC-drive drifts	J395 L10M	10	1			
OFTIA		G380 L5M	5				
		G380 L10M	10				
	Ontical communication cable	G380 L12M	12				
	Ear wiring between drive units (outside papel)	G380 L15M	15		0	0	0
	For wining between unive units (outside parier)	G380 L20M	20				
		G380 L25M	25				
		G380 L30M	30				

(Note1) For details on the optical communication cable, refer to the section "Optical communication cable specification" in Specifications Manual of each drive unit.

<Battery cable and connector>

	llaw	Madal	Length	Contento	Compatible model			
	nem	woder	(m)	Contents	E/EH	EM	EJ	
		DG30-0.3M	0.3			OMPATIBLE MO		
		DG30-0.5M	0.5					
Battery cab	Battony cable	DG30-1M	1.0					
	(For drive unit - Batton, box	DG30-2M	2.0	nn		-		
	For drive unit - drive unit)	DG30-3M	3.0				-	
For drive		DG30-5M	5.0					
unit		DG30-7M	7.0					
		DG30-10M	10.0					
	Battery cable	MR-BT6V2CBL0.3M	0.3			-		
	(For drive unit - drive unit)	MR-BT6V2CBL1M	1	₩	-			

<Power supply communication cable and connector>

	Itom	Model	Length	Contonto	Com	patible m	odel
	nem	Model	(m)	Contents	E/EH	EM	EJ
For CN4/9	Power supply communication cable	SH21	0.35 0.5 1 2 3		0	-	-
	Power supply communication cable connector set FCUA-CS000	FCUA-CS000	-	•	0	-	-
For CN02	Contactor control output connector	CNU23SCV2(AWG14) These connectors are			0	-	-
-01 CIN23	Finish outside diameter: to 64.2mm	supplied for each power supply unit.	-		0	-	-
For CN24	External emergency stop input connector	CNU24S (AWG24)	_		0	_	-

<Power backup unit connector>

	Item	Model	Length (m)	Contents	Compatil D-PFU	DIE model
For CN43	Input/output connector for power backup unit	CNU43S (AWG22)	-		0	0
For TE1	Power connector for power backup unit	CNU01SPFU	-		0	0
		(AWG14)	-	(دارسته در استه	0	0

<STO input connector>

	Itom	Madal	Length	Contento	Com	patible mo	odel
		woder	(m)	Contents	E/EH	EM	EJ
	STO cable	MR-D05UDL3M-B	-		0	-	0
For CN8	STO short-circuit connector	These connectors are supplied for each drive unit.	-	Required when not using dedicated wiring STO function.	0	-	0

LIST OF CABLES

<Servo encoder cable/Connector>

	Itom	Model	Length	Contonto	Con	patible m	odel
	item	Model	(m)	Coments	E/EH	EM	EJ
		CNV2E-8P-2M	2				
		CNV2E-8P-3M	3				
		CNV2E-8P-4M	4				
		CNV2E-8P-5M	5				
		CNV2E-8P-7M	7	1		0	
		CNV2E-8P-10M	10				
		CNV2E-8P-15M	15				
		CNV2E-8P-20M	20				
		CNV2E-8P-25M	25				
For	For HG/HG-H, HQ-H	CNV2E-8P-30M	30				
CN2/3	Motor side encoder cable (for D48/D51/D74)	CNV2E-9P-2M	2				
		CNV2E-9P-3M	3				
		CNV2E-9P-4M	4				
		CNV2E-9P-5M	5				
		CNV2E-9P-7M	7		0	0	0
		CNV2E-9P-10M	10				Ŭ
		CNV2E-9P-15M	15				
		CNV2E-9P-20M	20				
		CNV2E-9P-25M	25				
		CNV2E-9P-30M	30				
For motor	Motor side encoder connector/	CNE10-R10S(9)	-		0	0	0
Ball	Ball screw side encoder connector						
screw side encoder	Applicable cable outline $\phi 6.0$ to 9.0mm	CNE10-R10L(9)	-		0	0	0

(Note) When using cable of 15m or longer, use relay cable.

	Itom	Model	Length	Contonto	Com	patible m	odel
	nem	wodei	(m)	Contents	E/EH	EM	EJ
		CNV2E-HP-2M	2				
		CNV2E-HP-3M	3				
		CNV2E-HP-4M	4				
		CNV2E-HP-5M	5				
CNI2	MDS B HB unit apple	CNV2E-HP-7M	7	5~1 F		0	
CINS	MDS-B-FIR Unit Cable	CNV2E-HP-10M	10			U U	Ŭ
		CNV2E-HP-15M	15				
		CNV2E-HP-20M	20				
		CNV2E-HP-25M	25				
		CNV2E-HP-30M	30				
For MDS- BHR unit	MDS-B-HR connector (For CON1, 2: 1) (For CON3: 1) Applicable cable outline $\phi 8.5$ to 11mm	CNEHRS(10)	-		0	0	0
		CNV2E-D-2M	2				
		CNV2E-D-3M	3			0 0 - - 0	
	pplicable cable outline ø8.5 to 11mm	CNV2E-D-4M	4				
		CNV2E-D-5M	5				
For CN2	MDS B SD upit apple	CNV2E-D-7M	7	f			
FUI CINS	MDS-B-SD unit cable	CNV2E-D-10M	10			-	-
		CNV2E-D-15M	15				
		CNV2E-D-20M	20				
		CNV2E-D-25M	25				
		CNV2E-D-30M	30				
For MDS- B-SD unit	MDS-B-SD connector (Two-piece set)	FCUA-CS000	-	• •	0	-	-
For CN2/3	Encoder connector	CNU2S(AWG18)	-	EX .	0	0	0

<Brake cable and connector>

	Itom	Model	Length	Contonto	Com	patible m	odel
	Item	woder	(m)	Contents	E/EH	EM	EJ
For	Brake connector for <200V Series> HG	CNB10-R2S(6)	-	đ≊1D	0	0	0
brake	HG-H, HQ-H Applicable cable outline φ4.0 to 6.0mm	CNB10-R2L(6)	-		0	0	0
For CN20	Brake connector for motor brake control output	CNU23S(AWG14)	-		0	-	-

<Power connector>

	Item	Model	Length	Contents	Com	patible m	odel
		Model	(m)	Contenta	E/EH	EM	EJ
	Power connector for <200V Series> HG75, 105, 54, 104, 154, 224, 123, 223, 142	CNP18-10S(14)	-	0	0	0	0
	<400V Series> HG-H54, 104, 154	CNP18-10L(14)	-		0	0	0
For	Applicable cable outline φ10.5 to 14mm Power connector for <200V Series> HG204, 354, 303, 453, 302 400V Series	CNP22-22S(16)	-		Compatible i E/EH EM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -	0	0
power	 <400V Series> HG-H204, 354, 453, 703 Applicable cable outline φ12.5 to 16mm 	CNP22-22L(16)	-		0	0	0
Power connector for <200V Series> HG7703, 903 <400V Series> HG-H903	CNP32-17S(23)	-	0-	0	-	-	
	HG-H903 HQ-H903,1103 Applicable cable outline ¢22 to 23.8mm	CNP32-17L(23)	-	02	0	-	-
	Power connector for MDS-E-V1-20 to 160 MDS-E-V2-20 to 160 MDS-E-SP-20 to 80 MDS-E-SP2-20 to 80 MDS-EI-V1-10 to 80W	All axes CNU01SEF(AWG14) L-axis only CNU01SEL(AWG14) M-axis only CNU01SEM(AWG14)	-		0	-	-
For TE1	MDS-EH-V2-10 to 80W MDS-E-SP-20 to 80	· S-axis only CNU01SES(AWG14)		C []			
	Power connector for	CNU01SECV(AWG14)	_		0	_	_
	MDS-E-CV-37/75	CNU01SECV(AWG14)					
For CN31	Devent contraction MDC TM Contract	All axes CNU01SEF(AWG14) L-axis only CNU01SEL(AWG14)			-	0	-
For CN31 L/M/S	TOWER CONTRECTOR FOR INFO-EM SENES	· M-axis only CNU01SEM(AWG14) · S-axis only CNU01SES(AWG14)	_	ه. ال			
For CN22	Control power connector for MDS-EM Series Applicable cable outline ϕ 1.25 to 2.2mm	RCN22	-	L.	-	0	-

LIST OF CABLES

<Drive unit side main circuit connector>

Item		Model	Length (m)	Contents	Compatible model		
					E/EH	EM	EJ
For drive unit	For MDS-EJ-V1-10, 15, 30 For MDS-EJ-SP-20 Applicable cable outline: 0.8mm ² to 2.1mm ² Finish outside diameter: to ϕ 3.9mm	These connectors are supplied for each drive unit.	-	00000	-	-	0
			-		-	-	0
			-		-	-	0
			-		-	-	0
	For MDS-EJ-V1-40, 80 Applicable cable outline: (For CNP1, for CNP3) 1.25mm ² to 5.5mm ² (For CNP2) 0.14mm ² to 2.1mm ²	These connectors are supplied for each drive unit.	-	<u>100000</u>	-	-	0
			-		-	-	0
	Finish outside diameter: (For CNP1, for CNP3) to φ4.7mm (For CNP2) to φ3.9mm ²		-		-	-	0
			-		-	-	0
	For MDS-EJH-V1-10,15,20,40 Applicable cable outline:0.8mm ² to 2.1mm ² Finish outside diameter: to φ3.9mm	These connectors are supplied for each drive unit.	-	<u>100000</u>	-	-	0
			-		-	-	0
			-		-	-	0
			-		-	-	0

<Twin-head magnetic encoder (MBE405W / MBA405W) cable and connector>

		•		•			
Item		Model	Length (m)	Contonto	Compatible model		
				Contents	E/EH	EM	EJ
For CN2/3	Cable for MBE405W/MBA405W	CNV2E-MB-2M	2				
		CNV2E-MB-3M	3	[] []			
		CNV2E-MB-4M	4				
		CNV2E-MB-5M	5		0	0	0
		CNV2E-MB-7M	7				
		CNV2E-MB-10M	10				
		CNV2E-MB-15M	15				
		CNV2E-MB-20M	20				
	Connector for MBE405W/MBA405W	CNEMB2S(8)	-		0	0	0
For CN3 of preamplifier	Thermistor connector for MBE405W/ MBA405W	CNEMB3S(8)	-		0	0	0

<Spindle encoder cable and connector>

(m) Contents E/EH		
	EM	EJ
CNP2E-1-2M 2		
CNP2E-1-3M 3		
CNP2E-1-4M 4		
CNP2E-1-5M 5		
CNP2E-1-7M 7 5	~	
CNP2E-1-10M 10	0	
CNP2E-1-15M 15		
CNP2E-1-20M 20		
CNP2E-1-25M 25		
CNP2E-1-30M 30		
CNP3EZ-2P-2M 2	0	0
CNP3EZ-2P-3M 3		
CNP3EZ-2P-4M 4		
CNP3EZ-2P-5M 5		
CNP3EZ-2P-7M 7 6 6		
CNP3EZ-2P-10M 10		
CNP3EZ-2P-15M 15		
CNP3EZ-2P-20M 20		
CNP3EZ-2P-25M 25		
Exer CN23 Spindle side encoder CNP3EZ-2P-30M 30		
OSE-1024 cable CNP3EZ-3P-2M 2		
CNP3EZ-3P-3M 3	0	0
CNP3EZ-3P-4M 4		
CNP3EZ-3P-5M 5		
CNP3EZ-3P-10M 10		
CNP3EZ-3P-15M 15		
CNP3EZ-3P-20M 20		
CNP3EZ-3P-25M 25		
CNP3EZ-3P-30M 30		
Motor side PLG connector		
Spindle side accuracy encoder CNEPGS –	0	0
For TS5690 connector		
spindle Spindle side encoder CNE20-29S(10) -	0	0
motor OSE-1024 cable	Ŭ	Ŭ
CNE20-291 (10) -	0	
Applicable cable outline φ6.8 to 10mm	Ŭ	Ŭ
For CN2/3 Spindle encoder drive unit side connector CNU2S(AWG18) -	0	0

LIST OF CABLES

SOFTWARE TOOLS

Design

[NC Trainer2 plus]

NC Trainer2 plus supports customization development; it helps to program the ladder programming of the user PLC to be developed by machine tool builders and debug it and check the operations of customized screens.

Training

[NC Trainer2 / NC Trainer2 plus]

This is an application for operating the CNC screen and machining programs on a computer without the CNC control unit or a special display unit. It can also be used for learning CNC operation and checking machining programs. The machining programs created on NC Trainer2/NC Trainer2 plus can be used on actual CNCs.

Setup

Operational Support

For details regarding each software, refer to the Software Tools Catalog (BNP-A1224).

SOFTWARE TOOLS

[NC Trainer2 / NC Trainer2 plus]

This is an application for operating the CNC screen and machining programs on a computer without the CNC control unit or a special display unit. It can also be used for learning CNC operation and checking machining programs. The machining programs created on NC Trainer2/NC Trainer2 plus can be used on actual CNCs.

[NC Analyzer2]

Servo parameters can be adjusted automatically by measuring and analyzing the machine's characteristics.

Measurement and analysis can be done by running a servo motor using the machining program for adjustment, or using the vibration signal. This function can sample various types of data.

[NC Explorer]

CNC machining data files can be manipulated using Windows® Explorer on a computer when the computer is connected to multiple CNCs via Ethernet.

[NC Monitor2]

Taking advantage of the network in a plant, CNC operation status can be monitored from remote locations. Several CNCs can be connected and monitored simultaneously.

GLOBAL SERVICE NETWORK

We provide satisfying after-sales services worldwide, aiming to be your best partner.

Production site

Global Service

Network

Nagoya Works

Mitsubishi Electric Automation Manufacturing (Changshu) Co., Ltd.

India FA Center

FA Center

ASEAN FA Center

GLOBAL SERVICE NETWORK

■ : Production site ● : FA Center ○ : Service office

We have established FA Centers that manage service centers and service satellites in each area to enhance our service quality by providing trainings for engineers and enhancing service parts and repair facilities.

Taiwan FA Center

Thailand FA Cente

Global Service Network 7

American FA Center

Refer to the Mitsubishi Electric FA Global Service Catalog (K-001) for location, contact and other information of each office.

MEMO

YOUR SOLUTION PARTNER

Mitsubishi Electric offers a wide range of automation equipment from PLCs and HMIs to CNC and EDM machines.

A NAME TO TRUST

Since its beginnings in 1870, some 45 companies use the Mitsubishi name, covering a spectrum of finance, commerce and industry.

The Mitsubishi brand name is recognized around the world as a symbol of premium quality.

Mitsubishi Electric Corporation is active in space development, transportation, semi-conductors, energy systems, communications and information processing, audio visual equipment and home electronics, building and energy management and automation systems, and has 237 factories and laboratories worldwide in over 121 countries.

This is why you can rely on Mitsubi shi Electric automation solution because we know first hand about the need for reliable, efficient, easy-to-use automation and control in our own factories.

As one of the world's leading companies with a global turnover of over 4 trillion Yen (over \$40 billion), employing over 100,000 people, Mitsubishi Electric has the resource and the commitment to deliver the ultimate in service and support as well as the best products.

*Trademarks

MELDAS, MELSEC, EZSocket, EZMotion, iQ Platform, MELSOFT, GOT, CC-Link, CC-Link/LT and CC-Link IE are either trademarks or registered trademarks of Mitsubishi Electric Corporation in Japan and/or other countries. Ethernet is a registered trademark of Xerox Corporation in the United States and/or other countries. Microsoft® and Windows® are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. SD logo and SDHC logo are either registered trademarks or trademarks of LLC. Other company and product names that appear in this manual are trademarks or registered trademarks of the respective companies.

Automation solutions

Medium voltage:

Power monitoring, energy management

Compact and Modular Controllers

Inverters, Servos

Visualization: HMIs, Software, MES connectivity

Numerical Control (NC)

Processing machines: EDM, Lasers, IDS

Air-conditioning, Photovoltaic, EDS
Global Partner. Local Friend

▲ Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use. Mitsubishi Electric Corporation Nagoya Works is a factory certified for ISO14001(standards for environmental management systems) and ISO9001(standards for quality assurance management systems)

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN http://Global.MitsubishiElectric.com